JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED DERIVATIONS OF BCI-ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 4,  2009, pp.601-609
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.4.601
 Title & Authors
GENERALIZED DERIVATIONS OF BCI-ALGEBRAS
Ozturk, Mehmet Ali; Ceven, Yilmaz; Jun, Young-Bae;
  PDF(new window)
 Abstract
The notion of generalized derivations of a BCI-algebra is introduced, and some related properties are investigated. Also, the concept of a torsion free BCI-algebra is introduced and some properties are discussed.
 Keywords
p-semisimple BCI-algebra;p-atom;(generalized) derivation;torsion free BCI-algebra;
 Language
English
 Cited by
1.
PERMUTING TRI-f-DERIVATIONS IN LATTICES,;;

대한수학회논문집, 2011. vol.26. 1, pp.13-21 crossref(new window)
2.
ON GENERALIZED (α, β)-DERIVATIONS IN BCI-ALGEBRAS,;

Journal of applied mathematics & informatics, 2014. vol.32. 1_2, pp.27-38 crossref(new window)
1.
Ont-Derivations of BCI-Algebras, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
2.
On derivations of linguistic truth-valued lattice implication algebras, International Journal of Machine Learning and Cybernetics, 2016  crossref(new windwow)
3.
SYMMETRIC BI-(f, g)-DERIVATIONS IN LATTICES, Journal of the Chungcheong Mathematical Society, 2016, 29, 3, 491  crossref(new windwow)
4.
On(α,β)-Derivations in BCI-Algebras, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
5.
On Symmetric Left Bi-Derivations inBCI-Algebras, International Journal of Mathematics and Mathematical Sciences, 2013, 2013, 1  crossref(new windwow)
6.
ON GENERALIZED (α, β)-DERIVATIONS IN BCI-ALGEBRAS, Journal of applied mathematics & informatics, 2014, 32, 1_2, 27  crossref(new windwow)
7.
On derivations and their fixed point sets in residuated lattices, Fuzzy Sets and Systems, 2016, 303, 97  crossref(new windwow)
8.
On left (θ,ϕ)-derivations in BCI-algebras, Journal of the Egyptian Mathematical Society, 2014, 22, 2, 157  crossref(new windwow)
 References
1.
M. Aslam, A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36(1), (1991), 39-45.

2.
M. Bresar, On the distance of the composition of the two derivations to the generalized derivations, Glasgow Math. J. 33(1), (1991), 89-93. crossref(new window)

3.
Y. B. Jun, E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon. 38(4), (1993), 697-702.

4.
Y. B. Jun, X. L. Xin, E. H. Roh, The role of atoms in BCI-algebras, Soochow J. Math. 30 (2004), no. 4, 491-506.

5.
Y. B. Jun, X. L. Xin, On derivation of BCI-algebras, Inform. Sci. 159 (2004), 167-176. crossref(new window)

6.
T. D. Lei, C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(4) (1985), 511-517.

7.
D. J. Meng, BCI-algebras and abelian groups, Math. Japon. 32(5) (1987), 693-696.

8.
J. Meng, Y. B. Jun, E. H. Roh, BCI-algebras of order 6, Math. Japan. 47(1) (1998), 33-43.

9.
E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. crossref(new window)

10.
X. L. Xin, E. H. Roh, J. C. Li, Some results on the BCl-G part of BCI-algebras, Far East J. Math. Sci. Special volume (Part II) (1997) 363-370.

11.
Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japan. 36(5) (1991) 815-817.