JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DECOMPOSITION FORMULAS FOR THE GENERALIZID HYPERGEOMETRIC 4F3 FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 1,  2010, pp.1-16
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.1.001
 Title & Authors
DECOMPOSITION FORMULAS FOR THE GENERALIZID HYPERGEOMETRIC 4F3 FUNCTION
Hasanov, Anvar; Turaev, Mamasali; Choi, June-Sang;
  PDF(new window)
 Abstract
By using the generalized operator method given by Burchnall and Chaundy in 1940, the authors present one-dimensional inverse pairs of symbolic operators. Many operator identities involving these pairs of symbolic operators are rst constructed. By means of these operator identities, 11 decomposition formulas for the generalized hypergeometric function are then given. Furthermore, the integral representations associated with generalized hypergeometric functions are also presented.
 Keywords
Decomposition formulas;Generalized hypergeometric functions;Inverse pairs of symbolic operators;Integral representations;
 Language
English
 Cited by
1.
DECOMPOSITION FORMULAE FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE GAUSS-KUMMER IDENTITY,;;

대한수학회논문집, 2014. vol.29. 1, pp.97-108 crossref(new window)
1.
DECOMPOSITION FORMULAE FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE GAUSS-KUMMER IDENTITY, Communications of the Korean Mathematical Society, 2014, 29, 1, 97  crossref(new windwow)
 References
1.
P. Appell and J. Kampe de Feriet., Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.

2.
J.L. Burchnall and T.W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. crossref(new window)

3.
J.L. Burchnall and T.W. Chaundy, Expansions of Appell's double hypergeometric functions. II, Quart. J . Math. Oxford Ser. 12 (1941), 112-128. crossref(new window)

4.
T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 159-171. crossref(new window)

5.
A. Erdelyi, W.Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 1, Izd. Nauka, Moscow, 1973 (in Russian).

6.
A, Hesanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella function $F_A^{(r)}$ and other multiple hypergoometric functions, Appl. Math. Letters 19(2) (2006), 113-121. crossref(new window)

7.
A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Computers Math. Appl. 53(7) (2007), 1119-1128. crossref(new window)

8.
A. Hasanov, H. M. Srivastava, and M. Turaev, Decomposition formulas for some triple hypergoometric functions, J. Math. Anal. Appl, 324(2) (2006), 955-969. crossref(new window)

9.
A. Hasanov and M. Turaev, Decomposition formulas for the double hypergeometric functions G1 and G2, Appl. Math. Comput. 187(1) (2007), 195-201. crossref(new window)

10.
O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1982.

11.
E.G. Poole, Introduction to the Theory of Linear Differential Equations, Clarendon (Oxford University) Press, Oxford, 1936.

12.
L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, 1966.

13.
H. M. Srivastava, Hypergoometric functions of three variables, Ganita 15 (1964), 97-108.

14.
H. M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo (Ser. 2) 16 (1967), 99-115. crossref(new window)

15.
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1985.