JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON STABILITY OF EINSTEIN WARPED PRODUCT MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 1,  2010, pp.167-176
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.1.167
 Title & Authors
ON STABILITY OF EINSTEIN WARPED PRODUCT MANIFOLDS
Pyo, Yong-Soo; Kim, Hyun-Woong; Park, Joon-Sik;
  PDF(new window)
 Abstract
Let (B, ) and (N, ) be Einstein manifolds. Then, we get a complete (necessary and sufficient) condition for the warped product manifold ) to be Einstein, and obtain a complete condition for the Einstein warped product manifold to be weakly stable. Moreover, we get a complete condition for the map i : (, which is the identity map as a map, to be harmonic. Under the assumption that i is harmonic, we obtain a complete condition for to be Einstein.
 Keywords
harmonic map;stability of harmonic map;warped product manifold;
 Language
English
 Cited by
 References
1.
A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).

2.
S. Helgeson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York (1978).

3.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York (1963).

4.
K. Nomizu and T. Sasaki, Affine Differential Geometry - Geometry of Affine Immersions, Cambridge Univ. Press (1994).

5.
J.-S. Park. Harmonic inner automorphisms of compact connected semisimple Lie groups, Tohoku Math. J. 42 (1990), 83-91. crossref(new window)

6.
J.-S. Park. Critical homogeneous metrics on the Heisenberg manifold, Inter. Inform. Sci. 11 (2005), 31-34.

7.
J.-S. Park and W. T. Oh, The Abbena- Thurston manifold as a critical point, Can. Math. Bull. 39 (1996). 352-359. crossref(new window)

8.
N. Shimakura, Elliptic Partial Differential Operators of Elliptic Type, Transl. Math. Monographs, Vol. 99, Amer. Math. Soc., Providence, HI, 1991.

9.
H. Urakawa, Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, Vol. 99, Amer. Math. Soc., Providence, RI, 1993.