JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FIXED POINT APPROACH TO GENERALIZED STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 1,  2010, pp.29-43
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.1.029
 Title & Authors
A FIXED POINT APPROACH TO GENERALIZED STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES
Park, Kyoo-Hong; Jung, Yong-Soo;
  PDF(new window)
 Abstract
In this note, by using the fixed point method, we prove the generalized stability for a mixed type functional equation in random normed spaces of which the general solution is either cubic or quadratic.
 Keywords
Generalized stability;random normed space;fixed point;cubic function;quadratic function;
 Language
English
 Cited by
 References
1.
J. Aczel and J. Dhombres, Functional Equetions in Several Variables, Cambridge Univ. Press, 1989.

2.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

3.
L. Cedariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Ineq. Pure Appl. Math., 4(1) (2003), Article 4, 7 pp.

4.
P.W. Cholewa, Remarks on the stability of Junctional equations, Aequationes Math., 27 (1984), 76-86. crossref(new window)

5.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. crossref(new window)

6.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. crossref(new window)

7.
O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Mathematics and it applications, Kluwer Academic Publishers, Dordrecht, The Netherlands 536 (2001).

8.
D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224. crossref(new window)

9.
K. W. Jun and H.-M. Kim, The generalized Hyers.Ulam-Rassias stability of a cubic Junctional equation, J. Math. Anal. Appl., 274(2) (2002), 867-878. crossref(new window)

10.
K. W. Jun and H.-M. Kim, On the Hyers-Ulam stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc., 42(1) (2005), 133-148. crossref(new window)

11.
S. -M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. crossref(new window)

12.
Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. crossref(new window)

13.
H.-M. Kim and I.-S. Chang, On. the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7(1) (2005), 21-33.

14.
B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126, 74 (1968), 305-309.

15.
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343(1) (2008), 567-572. crossref(new window)

16.
M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull Braz. Math. Soc., 72 (2006), 361-376.

17.
V. Radu, The fixed point alternative and the stability of functional equations, Sem. Fixed Point Theory 4(1), (2003), 91-96.

18.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. crossref(new window)

19.
Th.M. Rassias (Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht / Boston/ London, 2000.

20.
B. Schweizer and A. Sklar, Probabilistic metric spaces, Noth-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA (1983).

21.
A.N. Sersrnev, On the concept of a stochastic normalized space, Doklady Akademii Nauk SSSR, 149 (1963) (Russian), 280-283.

22.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat, Fis. Milano, 53 (1983), 113-129. crossref(new window)

23.
S.M. Ulam, Problems in Modern Mathematics, (1960) Chap. VI, Science ed., Wiley, New York .