JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 1,  2010, pp.61-71
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.1.061
 Title & Authors
AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON
Lee, Seung-Woo; Kim, Yong-Sup;
  PDF(new window)
 Abstract
The aim of this paper is to extend a number of transformation formulas for the four , , , and among twenty triple hypergeometric series to introduced earlier by Exton. The results are derived from the generalized Kummer's theorem and Dixon's theorem obtained earlier by Lavoie et al..
 Keywords
Triple hypergeometric series;Generalized Kummer's theorem for ;Generalized Dixon's summation theorem for ;
 Language
English
 Cited by
1.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$,;;;

한국수학교육학회지시리즈B:순수및응용수학, 2010. vol.17. 4, pp.347-354
2.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5,;;;

호남수학학술지, 2010. vol.32. 3, pp.389-397 crossref(new window)
3.
GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION,;;;

호남수학학술지, 2011. vol.33. 1, pp.43-50 crossref(new window)
4.
DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS,;;;

충청수학회지, 2011. vol.24. 4, pp.745-758
5.
GENERALIZED SINGLE INTEGRAL INVOLVING KAMP$\acute{E}$ DE F$\acute{E}$RIET FUNCTION,;;;

충청수학회지, 2011. vol.24. 2, pp.205-212
6.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8,;;;

대한수학회논문집, 2012. vol.27. 2, pp.257-264 crossref(new window)
1.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8, Communications of the Korean Mathematical Society, 2012, 27, 2, 257  crossref(new windwow)
2.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5, Honam Mathematical Journal, 2010, 32, 3, 389  crossref(new windwow)
3.
GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION, Honam Mathematical Journal, 2011, 33, 1, 43  crossref(new windwow)
 References
1.
W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in math., 1935 Reprinted by Stechert-Hefner, New York, 1964.

2.
J. Choi, Notes on formal manipulations of double series, Commun. of Korean Math. Soc. 18 (4) (2003), 781-789. crossref(new window)

3.
H. Exton, Hypergeometric function of three variables, J. Indian Aced. Maths. 4(2) (1982), 113-119.

4.
Y. S. Kim, J. Choi and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series Xs, Honam Math. Journal 27 (4) (2005), 603-608.

5.
Y. S. Kim and A. K. Rathie, On an extension formulas for the triple hypergeometric series Xs due to Exton, Bull. Korean Math. Soc. 44 (4) (2007), 743-751. crossref(new window)

6.
Y. S. Kim and A. K. Rathie, Another method for Padmanabham's transformation formula for Exton's triple hypergeometric series Xs, Commu. of Korean Math. Soc. 24 (4) (2009), 517- 521. crossref(new window)

7.
J. L. Lavoie, F. grodin and A. K. Rathie, Generalizations of Watson's theorem on the sum of a $_3F_2$, Indian J. Math. 34 (2) (1992), 23-32.

8.
J. L. Lavoie, F. grodin and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a $_3F_2$, Journal of Computational and Applied Mathematics 72 (1996), 293-300. crossref(new window)

9.
J. L. Lavoie, F. grodin, A. K. Rathie and K. Arora Generalizations of Dixon's theorem on the sum of a $_3F_2$, Marhematics of Computation 62, No.205 (1994), 267-276.

10.
E. D. Rainville, Special functions, Macmillan Company, New York, 1960.

11.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001.

12.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester);Wiley, New York, Chichester, Brisbane, and Toronto, 1985.

13.
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester); Wiley, New York, Chichester, Brisbane, and Toronto, 1984.