JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 1,  2010, pp.91-99
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.1.091
 Title & Authors
A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION
Ko, Mi-Hwa;
  PDF(new window)
 Abstract
In this paper we introduce the concept of asymptotically almost negatively associated random variables in a Hilbert space and obtain the strong law of large numbers for a strictly stationary asymptotically almost negatively associated sequence of H-valued random variables with zero means and finite second moments. As an application we prove a strong law of large numbers for a linear process generated by asymptotically almost negatively random variables in a Hilbert space with this result.
 Keywords
Almost sure convergence;linear process in a Hilbert space;asymptotically almost negatively associated;linear operator;Hilbert space valued random variable;
 Language
English
 Cited by
 References
1.
Araujo, A. and Gine, E.(1980) The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley and Sons.

2.
Bosq, D. (2004) Berry-Essen inequality for linear processes in Hilbert spaces, Statist. Probab. Lett. 63 243-247

3.
Brockwell, P. and Davis, R.(1987) Time series, Theory and Method. Springer, Berlin

4.
Burton, R., Dabrowski, A.R. and Dehling, H.(1986) An invariance principle for weakly associated random vectors, Stochastic Processes Appl. 23 301-306 crossref(new window)

5.
Chandra, T. K., Ghosal, S. (1996a). Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta. Math. Hungar. 32 327-336.

6.
Chandra, T. K., Ghosal, S. (1996b). The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab. 9 797-809. crossref(new window)

7.
Esary, J. Proschan, F. and Walkup, D. (1967). Association of random variables with applications, Ann. Math. Stat. 38 1466-1474. crossref(new window)

8.
Joag-Dev, K. and Proschan, F. (1983) Negative association of random variables with applications, Ann. Statist. 11 286-295 crossref(new window)

9.
Kim, T.S., Ko, M.H. and Lee I.H. (2004). On the strong law for asymptotically almost negatively associated random variables, Rocky Mountain J. Math. 34 979-989. crossref(new window)

10.
Ko, M.H., Kim, T .S. and Han, K.H. (2009) A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Them. Probab. 22 506-513 crossref(new window)

11.
Ko, M.H. (2009) A central limit theorem for linear process in a Hilbert space under negative association, Korean Commun. Stat. 16 687-696 crossref(new window)

12.
Melevede, F., Peligrad, M. and Utev, S. (1997) Sharp conditions for the CLT of linear processes in a Hilbert space, J. Theor. Probab. 10 681-693 crossref(new window)

13.
Stout, W.F. (1995) Almost sure convergence, Academic, New York.