JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 2,  2010, pp.255-260
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.2.255
 Title & Authors
COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG
Kang, Joo-Ho;
  PDF(new window)
 Abstract
Given vectors x and y in a separable complex Hilbert space , an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. We show the following : Let Alg be a tridiagonal algebra on a separable complex Hilbert space and let x = and y = be vectors in H. Then the following are equivalent: (1) There exists a compact operator A = in Alg such that Ax = y. (2) There is a sequence in such that converges to zero and for all k , .
 Keywords
Compact Interpolation;CSL-Algebra;Tridiagonal Algebra;Alg;
 Language
English
 Cited by
 References
1.
Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.

2.
Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126. crossref(new window)

3.
Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4), 33 (1989), 657-672.

4.
Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115. crossref(new window)

5.
Jo, Y. S. and Choi, T . Y., Isomorphisms of $AlgL_n$ and $AlgL_{\infty}$, Michigan Math. J. 37 (1990), 305-314. crossref(new window)

6.
Jo, Y. S., Kang, J. H. and Dong Wan Park, Equations AX = Y and Ax = y in AlgL, J. of Korean Math. Soc. 43 (2006), 399-411. crossref(new window)

7.
Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276. crossref(new window)

8.
Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.

9.
Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418. crossref(new window)