JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SCALARIZATION METHODS FOR VECTOR VARIATIONAL INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 2,  2010, pp.299-306
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.2.299
 Title & Authors
SCALARIZATION METHODS FOR VECTOR VARIATIONAL INEQUALITIES
Lee, Byung-Soo; Khan, M. Firdosh; Salahuddin, Salahuddin;
  PDF(new window)
 Keywords
 Language
English
 Cited by
 References
1.
G.Y. Chen, X.X. Huang and X.Q. Yang, Vector optimization: Set-valued Variational Analysis, Springer-Verlag, Berlin, Heidelberg, 2005.

2.
F. Giannessi, Vector Variational Inequalities and Vector Theory Variational Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

3.
F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities. Image space analysis and separation, in : F. Giannessi(Ed.) Vector variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000, pp. 153-215.

4.
S.-M. Guu, N.-J. Huang and J. Li, Scalarization approaches for set-valued vector optimization problems and vector variational inequalities, J. Math. Anal. Appl. 356 (2009), 564-576. crossref(new window)

5.
N. Hadjesavvas and S. Schaible, Quasimonotonicity and pseudomonotonicity in variational inequalities and equilibrium problem: In Generalized Convexity Generalized Monotonicity (Edited by J.P. Crouzeix, J.E. Martinez-Legaz and M. Volle) Academic Publishers, Dordrecht, 257-275, 1998.

6.
B. Jimenez, V. Novo and M. Sama, Scalarization and optimality conditions for strict minimizers in multiobjective optimization via contingent epiderivatives, J. Math. Anal. Appl. 352 (2009), 788-798. crossref(new window)

7.
H. Kneser, Sur un theoreme fundamental dela theorie des Jeux, C.R. Acad. Sci. Paris 234 (1952), 2418-2420.

8.
I.V. Konnov, A scalarization approach for variational inequalities with applications, J. Global Optim. 32 (2005), 517-527. crossref(new window)

9.
Z.B. Liu, N.J. Huang and B.S. Lee, Scalarization approaches for generalized vector variational inequalities, Nonlinear Anal. Forum 12(1) (2007), 119-124.

10.
Z.D. Slavov, Scalarization techniques or relationship between a social welfare function and a Pareto optimality concept, Appl. Math. & Comp. 172 (2006), 464-471. crossref(new window)