JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEVERAL KINDS OF INTUITIONISTIC FUZZY OPEN SETS AND INTUITIONISTIC FUZZY INTERIORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 2,  2010, pp.307-331
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.2.307
 Title & Authors
SEVERAL KINDS OF INTUITIONISTIC FUZZY OPEN SETS AND INTUITIONISTIC FUZZY INTERIORS
Kim, Chang-Su; Kang, Jeong-Gi; Kim, Myoung-Jo; Ko, Mi-Young; Park, Mi-Ran;
  PDF(new window)
 Abstract
The notion of intuitionistic fuzzy semi-pre interior (semi-pre closure) is introduced, and several related properties are investigated. Characterizations of an intuitionistic fuzzy regular open set, an intuitionistic fuzzy semi-open set and an intuitionistic fuzzy -open set are provided. A method to make an intuitionistic fuzzy regular open set (resp. intuitionistic fuzzy regular closed set) is established. A relation between an intuitionistic fuzzy -open set and an intuitionistic fuzzy semi-preopen set is considered. A condition for an intuitionistic fuzzy set to be an intuitionistic fuzzy -open set is discussed.
 Keywords
Intuitionistic fuzzy semi-open (-open, -open, semi-preopen, preopen, regular open) set;Intuitionistic fuzzy -interior (-interior, semi-interior, preinterior, semi-pre-interior);
 Language
English
 Cited by
 References
1.
K. T. Atannassov, Intuitionistic fuzzy ses, Fuzzy sets and Systems. 20 (1986), 87-96. crossref(new window)

2.
C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. crossref(new window)

3.
D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems. 88(1997), 81-89. crossref(new window)

4.
H. Gurcay, D. Coker and A. Haydar Es On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy. Math. 5 (1997), 365-378.

5.
I. M. Hanafy, Intuitionistic fuzzy $\gamma$-Continuity, Canad. Math. Bull. (submitted). crossref(new window)

6.
K. Hur and Y. B. Jun, On Intuitionistic fuzzy Alpha-Continuous mappigs, Honam Math. J. 25 (2000), 131-139.

7.
J. K. Jeon, Y. B. Jun and J. H. Park, Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy precontinuty, Internat. J. Math. Math. Sci. 19 (2005), 3091-3101.

8.
Y. B. Jun and S. Z. Song, Intuitionistic fuzzy semi-preopen sts and intuitionistic fuzzy semi-pre Continuous mappigs, J. Appl. Math and Computing. 19 (2005), 467-474.