JOURNAL BROWSE
Search
Advanced SearchSearch Tips
H * H-FUZZY SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 2,  2010, pp.333-362
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.2.333
 Title & Authors
H * H-FUZZY SETS
Lee, Wang-Ro; Hur, Kul;
  PDF(new window)
 Abstract
We define H*H-fuzzy set and form a new category Set(H*H) consisting of H*H-fuzzy sets and morphisms between them. First, we study it in the sense of topological universe and obtain an exponential objects of Set(H*H). Second, we investigate some relationships among the categories Set(H*H), Set(H) and ISet(H).
 Keywords
H*H-fuzzy set;(co)topological category;cartesian closed category;topological universe;topos;
 Language
English
 Cited by
 References
1.
J. Adamek and H. Herrlich, Cartrsian closed categories, quasitopi and topological Universe, Comment. Math. Univ. Carolin. 27 (2) (1986), 235-257.

2.
G. Birkhoff, Lattice Theory (A.M.S. Colloquium Publication Vol XXV, 1967).

3.
K. A. Dib and Nabil L. Youssef, Fuzzy cartesian product, fuzzy relations and fuzzy functions, Fuzzy Sets and Systems 41 (1991), 299-315. crossref(new window)

4.
J. C. Carrega, The category Rel(H) and Fuz(H), Fuzzy Sets and Systems 9 (1983), 327-332. crossref(new window)

5.
E. J. Dubuc, Concrete quasitopoi, Applications of Sheaves. Proc. Dunham 1977, Lect. Notes in Math. 753 (1979), 239-254. crossref(new window)

6.
E. Eytan, Fuzzy sets: a topological point of view, Fuzzy Sets and Systems 5 (1981), 47-67. crossref(new window)

7.
J. A. Goguen, Categories of V-sets, Bull. Amer. Math. Soc. 75 (1969), 622-624. crossref(new window)

8.
H. Herrlich, Cartesian closed topological categories, Math. Coll. Univ. Cape Town 9 (1974), 1-16.

9.
H. Herrlich and G. E. Strecker, Category Theory (Allyn and Bacon, Newton, MA, 1973).

10.
K. Hur, A note on the category Set(H), Honam Math. J. 10 (1988), 89-94.

11.
K. Hur, H. W. Kang and J. H. Ryou, Intuitionistic H-fuzzy sets, J. Korea Soc. Math. Educ. Ser. B; Pure Appl. Math. 12 (1) (2005), 33-45.

12.
P. T. Johnstone, Stone spaces, Cambridge University Press (1982).

13.
C. Y. Kim, S. S. Hong, Y. H. Hong and P. H. Park, Algebras in Cartesian closed topological categories, Lecture Note Series 1, 26 (1985).

14.
C. V. Negoita and C. Al. Stefanescu, Fuzzy objects in topoi, a generalization of fuzzy sets, Bul. Inst, Politehn. Iasi 24 (1978), 25-28.

15.
L. D. Nel, Topological universes and smooth Gelfand-Naimark duality, mathematical applications of category theory, Proc. A.M.S. Spec. Session Denver, 1983, Contemporary Mathematics 30 (1984), 224-276.

16.
A. M. Pittes, Fuzzy sets do not form a topos, Fuzzy Sets and Systems 8 (1982), 235-244. crossref(new window)

17.
D. Ponasse, Fuzzy sets do not form a topos, Fuzzy Sets and Systems 8 (1982), 235-244. crossref(new window)

18.
D. Ponasse, Some remarks on the category Fuz(H) of M. Eytan, Fuzzy Sets and Systems 9 (1983), 199-204. crossref(new window)

19.
L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. crossref(new window)