JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.375-387
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.375
 Title & Authors
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE
Han, Sang-Eon;
  PDF(new window)
 Abstract
The paper studies an existence problem of a (generalized) universal covering space over a digital wedge with a compatible adjacency. In algebraic topology it is well-known that a connected, locally path connected, semilocally simply connected space has a universal covering space. Unlike this property, in digital covering theory we need to investigate its digital version which remains open.
 Keywords
digital isomorphism;digital covering;simply k-connected;universal covering property;generalized universal covering space;compatible adjacency of a digital wedge;
 Language
English
 Cited by
 References
1.
R. Ayala, E. Dominguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003) 3-24. crossref(new window)

2.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10(1999) 51-62. crossref(new window)

3.
L. Boxer, Digital Products, Wedge; and Covering Spaces, Jour. of Mathematical Imaging and Vision 25(2006) 159-171. crossref(new window)

4.
S.E. Han, Algorithm for discriminating digital images w.r.t. a digital ($k_{0}, k_{1}$)-homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 505-512.

5.
S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 487-495.

6.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3)(2005) 73-91. crossref(new window)

7.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1)(2005) 115-129.

8.
S.E. Han, Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1)(2006) 215-216. crossref(new window)

9.
S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag, Berlin, pp.214-225 (2006).

10.
S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134. crossref(new window)

11.
S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6)(2007) 1479-1503. crossref(new window)

12.
S.E. Han, Comparison among digital fundamental groups and its applications. Information Sciences 178(2008) 2091-2104. crossref(new window)

13.
S.E. Han, Equivalent ($k_0, k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008)550-561. crossref(new window)

14.
S.E. Han, Map preserving local properties of a digital image Acta Applicandae Mathematicae 104(2) (2008) 177-190- crossref(new window)

15.
S.E. Han, The k-homotopic thinning and a torus-like digital image in Z", Journal of Mathematical Imaging and Vision 31 (1)(2008) 1-16. crossref(new window)

16.
S.E. Han, Cartesian product of the universal covering property Acta Applicandae Mathematicae 108 (2009) 363-383. crossref(new window)

17.
S.E. Han, Regural covering space in digital covering theory and its applications. Honam Mathematical Journal 31(3) (2009) 279-292. crossref(new window)

18.
S.E. Han, Remark on a generalized universal covering space, Honam Mathematical Jour 31(3) (2009) 267-278. crossref(new window)

19.
S.E. Han, Existence problem of a generalized universal covering space, Acta Applicandae Mathematicae 109(3) (2010) 805-827. crossref(new window)

20.
S.E. Han, KD-($k_0, k_1$)-homotopy equivalence and its applications Journal of Korean Mathematical Society 47(5) (2010) 1031-1054. crossref(new window)

21.
S.E. Han, Ultra regular covering space and its automorphism group International Journal of Applied Mathematics Computer Science, accepted.

22.
S.E. Han, Properties of a digital covering spaces and discrete Deck's transformation group Acta Applicandae Mathematicae, submitted

23.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics(1987) 227-234.

24.
T.Y. Kong, A digital fundamental group Computers and Graphics 13 (1989) 159-166. crossref(new window)

25.
T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, (1996).

26.
W.S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977.

27.
A. Rosenfeld, Digital topology, Am. Math. Mon. 86(1979) 76-87.

28.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.