JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.389-397
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.389
 Title & Authors
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5
Choi, June-Sang; Hasanov, Anvar; Turaev, Mamasali;
  PDF(new window)
 Abstract
Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i
 Keywords
Generalized hypergeometric series;Multiple hypergeometric functions;Integrals of Euler type;Laplace integral;Exton functions ;Humbert function ;Appell function ;Srivastava function ;
 Language
English
 Cited by
1.
Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17,;;

Kyungpook mathematical journal, 2014. vol.54. 4, pp.677-684 crossref(new window)
1.
Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12and X17, Kyungpook mathematical journal, 2014, 54, 4, 677  crossref(new windwow)
2.
Relations between Lauricella’s triple hypergeometric function FA(3)(x,y,z) and Exton’s function X8, Advances in Difference Equations, 2013, 2013, 1, 34  crossref(new windwow)
 References
1.
P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper-spheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.

2.
J. Choi, A. K. Rathie, and H. Harsh, Remarks on a summation formula for three variables hypergeometric function $X_8$ and certain hypergeometric transformations, East Asian Math. J. 25(4) (2009), 481-486.

3.
A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.

4.
H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113-119.

5.
Y. S. Kim, J. Choi, and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series $X_8$, Honam Math. J. 27(4) (2005), 603-608.

6.
Y. S. Kim and A. K. Rathie, On an extension formula for the triple hypergeometric series $X_8$ due to Exton, Bull. Korean Math. Soc. 44(4) (2007), 743-751. crossref(new window)

7.
Y. S. Kim and A. K. Rathie, Another method for Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$, Commun. Korean Math. Soc. 24(4) (2009), 517-521. crossref(new window)

8.
S. W. Lee and Y. S. Kim, An extension of the triple hypergeometric series by Exton, Honam Math. J. 32(1) (2010), 61-71. crossref(new window)

9.
P. A. Padnanabham, Two results on three variable hypergeometric function, Indian J. Pure Appl. Math. 30 (1999) 1107-1109.

10.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.