JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE ANALYSIS OF PRECONDITIONED AOR ITERATIVE METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.399-412
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.399
 Title & Authors
CONVERGENCE ANALYSIS OF PRECONDITIONED AOR ITERATIVE METHOD
Hessari, P.; Darvishi, M.T.; Shin, B.C.;
  PDF(new window)
 Abstract
In this paper, we consider a preconditioned accelerated overrelaxation (PAOR) method to solve systems of linear equations. We show the convergence of the PAOR method. We also give com-parison results when the coefficient matrix is an L- or H-matrix. Finally, we provide some numerical experiments to show efficiency of PAOR method.
 Keywords
Preconditioner;AOR iterative method;H-matrix;L-matrix;
 Language
English
 Cited by
1.
CONVERGENCE ANALYSIS OF PRECONDITIONED AOR ITERATIVE METHOD, Honam Mathematical Journal, 2010, 32, 3, 399  crossref(new windwow)
 References
1.
Qingbing Liu, Guoliang Chen, Jing Cai, Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices, Computer Math. Appl. 56 (2008) 2048-2053. crossref(new window)

2.
T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving the Gauss-Seidel method for Z-matrices, Linear Algebra Appl., 267 (1997) 113-123. crossref(new window)

3.
M.T. Darvishi, P. Hessari, B.-Y. Shin, Preconditioned modified AOR method for systems of linear equations, Comm. Numer. Meth. Engng., (in press), doi:10.1002/cnm.1330. crossref(new window)

4.
A. Neumaier, On the comparison of H-matrices with M-matrices, Linear Algebra Appl. 83 (1986) 135-141. crossref(new window)

5.
C. Li, D.J. Evans, Improving the SOR method, Technical Report 901, Department of computer studies, University of Loughborough, 1994.

6.
A. Berman, R.J. Leramons, Nonnegative matrices in the mathematics sciences, SIAM, Philadelphia, PA, 1994.

7.
R.S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962; Springer Series in Computational Mathematics, vol. 27, Springer-Verlag, Berlin. 2000.

8.
W. Li, W.W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Linear Algebra Appl. 317 (2000) 227-240. crossref(new window)

9.
D.M. Young, Iterative solution for large linear systems, Academic press, New York, (1971).

10.
Y.Z. Song, Comparisons of nonnegative splitting of matrices, Linear Algebra Appl. 154-156 (1991) 433-455. crossref(new window)

11.
Y.T. Li, S. Yang, A multi-parameters preconditioned AOR iterative method for linear systems, Appl. Math. Comput. 206 (2008) 465-473. crossref(new window)