JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.413-439
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.413
 Title & Authors
GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS
Jun, Y.B.; Dudek, W.A.; Shabir, M.; Kang, Min-Su;
  PDF(new window)
 Abstract
W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of ()-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on ()-fuzzy ideals of hemirings. As a generalization of the notions of -fuzzy left (right) ideals, -fuzzy h-ideals and -fuzzy k-ideals, the concepts of -fuzzy left (right) ideals, -fuzzy h-ideals and -fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an -fuzzy left (right) ideal (resp. -fuzzy h-ideal, -fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.
 Keywords
-fuzzy left (right) ideal;-fuzzy h (k)-ideal;fuzzifying left (right) ideal;fuzzifying h (k)-ideal;t-implication-based fuzzy left (right) ideal;t-implication-based fuzzy h (k)-ideal;
 Language
English
 Cited by
1.
Ordered semigroups characterized by ( $${ \in,\in \vee q}_{k}$$ )-fuzzy generalized bi-ideals, Neural Computing and Applications, 2012, 21, S1, 121  crossref(new windwow)
2.
New types of fuzzy bi-ideals in ordered semigroups, Neural Computing and Applications, 2012, 21, S1, 295  crossref(new windwow)
3.
Characterizations of hemirings by (,qk)-fuzzy ideals, Computers & Mathematics with Applications, 2011, 61, 4, 1059  crossref(new windwow)
 References
1.
J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math. 6 (1998) 181-192.

2.
J. Ahsan, K. Saifullah, M. F. Khan, Fuzzy semirings, Fuzzy Sets and Systems 60 (1993) 309-320. crossref(new window)

3.
A. W. Aho, J. D. Ullman, Languages and Computation, Addison-Wesley, Reading, MA, 1979.

4.
S. K. Bhakat, (${\in}{\vee}q$)-level subset, Fuzzy Sets and Systems 103 (1999), 529-533. crossref(new window)

5.
S. K. Bhakat, (${\in},{\in}{\vee}q$)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000), 299-312. crossref(new window)

6.
S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992), 235-241. crossref(new window)

7.
S. K. Bhakat and P. Das, (${\in},{\in}{\vee}q$)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359-368. crossref(new window)

8.
S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996), 383-393. crossref(new window)

9.
W. A. Dudek, M. Shabir, M. Irfan Ali, ($\alpha,\beta$)-fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2009), 310-321. crossref(new window)

10.
F. Feng, Y. B. Jun, Z. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628. crossref(new window)

11.
S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Sets and Systems 95 (1998) 103-108. crossref(new window)

12.
K. Glazck. A guide to literature on semirings and their applications in mathematics and information sciences: With complete bibliography. Kluwer Acad. Publ., Dordrecht, 2002.

13.
J. S. Golan, Semirings and their Applications. Kluwer Acad. Publ., 1999.

14.
U. Hebisch. H. J. Weinert. Semirings. Algebraic Theory and Application in the Computer Science, World Scientific, 1998.

15.
Y. B. Jun, Generalizations of (${\in},{\in}{\vee}q$)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009), 1383-1390. crossref(new window)

16.
Y. B. Jun, On ($\alpha,\beta$)-fuzzy subalgebras of BCK BCI-algebras, Bull. Korean Math. Soc. 42(4) (2005) 703-711. crossref(new window)

17.
Y. B. Jun. Fuzzy subalgebras of type ($\alpha,\beta$) in BCK BCI-algebras, Kyungpook Math. J. 47 (2007) 403-410.

18.
Y. B. Jun, Note on "($\alpha,\beta$)-fuzzy ideals of hemirings", Comput. Math. Appl. 59 (2010) 2582-2586. crossref(new window)

19.
Y. B. Jun, M. A. Ozurk, S. Z. Song, On fuzzy h-ideals in hemirings. Inform. Sci. 162 (2004) 211-226. crossref(new window)

20.
P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. crossref(new window)

21.
M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems 39 (1991) 303-321. crossref(new window)

22.
M. S. Ying, On standard models of fuzzy modal logics, Fuzzy Sets and Systems 26 (1988) 357-363. crossref(new window)

23.
J. Zhan. W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci. 177 (2007) 876-886. crossref(new window)