JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GROWING ALGEBRA CONTAINING THE POLYNOMIAL RING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.467-480
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.467
 Title & Authors
A GROWING ALGEBRA CONTAINING THE POLYNOMIAL RING
Choi, Seul-Hee;
  PDF(new window)
 Abstract
There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra (see [2], [3], [4], [5], [6], [10], [13], [15], [16]). We and all the derivations of the growing algebra WN(, 0, 3)[1] with the set of all right annihilators
 Keywords
purely outer;non-associative algebra;derivation;
 Language
English
 Cited by
 References
1.
Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakianathan, Lie admissible non-associative algebras. Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120. crossref(new window)

2.
Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28, No. 3, Hadronic Journal, 2005, 287-295.

3.
Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, Vol. 29, No. 2, 2007, 213-222. crossref(new window)

4.
Seul Hee Choi, New algebras using additive abelian groups I, Honam Mathematical Journal, Vol. 31, No. 3, 2009, 407-419. crossref(new window)

5.
Seul Hee Choi and Ki-Bong Nam, "Weyl type non-associative algebra using additive groups I." Algebra Colloquium, Volume 14 (2007), 479-488, Number 3. 2007. crossref(new window)

6.
Seul Hee Choi and Ki-Bong Nam, "Derivations of a restricted Weyl Type Algebra I", Rocky Mountain Math. Journals, Volume 37, Number 6, 2007, 67-84. crossref(new window)

7.
Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, "Derivations of a restricted Weyl type algebra containing the polynomial ring", Communication in Algebra, Volume 36, Issue 9 September 2008, 3435 - 3446. crossref(new window)

8.
I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Mathematical association of America, 100-101.

9.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21.

10.
T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202.

11.
V. G. Kac, DeX-X-SCRIPTion of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.

12.
Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576.

13.
Jongwoo Lee and Ki-bong Nam, "Non-Associative Algebras containing the Matrix Ring", Linear Algebra and its Applications Volume 429, Issue 1, 1 July 2008, Pages 72-78. crossref(new window)

14.
Ki-Bong Nam, Generalized W and H Type Lie Algebras, Algebra Colloquium 6:3, (1999), 329-340.

15.
Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500.

16.
Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No. 3, 159-164.

17.
D. P. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998).

18.
R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138.