JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RESULTANT AND DISCRIMINANT OF ITERATE POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 3,  2010, pp.493-514
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.3.493
 Title & Authors
RESULTANT AND DISCRIMINANT OF ITERATE POLYNOMIALS
Choi, Eun-Mi;
  PDF(new window)
 Abstract
The resultant and discriminant of composite polynomials were studied by McKay and Wang using some algebraic properties. In this paper we study the resultant and discriminant of iterate polynomials. We shall use elementary computations of matrices and block matrix determinants; this could provide not only the values but also the visual structure of resultant and discriminant from elementary matrix calculation.
 Keywords
Resultant;Discriminant;Iterated polynomial;
 Language
English
 Cited by
 References
1.
H. Cohen. Resultants and Discriminants. A Course in Computational Algebraic Number Theory. New York, Springer Verlag, (1993) 119-123.

2.
D. Cox, J. Little, D. OShea. Using Algebraic Geometry. New York, Springer Verlag, 1998.

3.
R.N. Goldman, T. Sederberg, D. Anderson. Vector elimination: a technique for the implicitization, inversion and intersection of planar parametric rational polynomial curves. Comput. Aided Geom. Des., 1, (1984) 327-356. crossref(new window)

4.
R. Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomilas, J. London Math. Soc. 78 (2), (2008) 523-544. crossref(new window)

5.
J.T. Kajiya. Ray tracing parametric patches. Proceedings of SIGGRAPH (1982) 245-254.

6.
D. Manocha, J. Canny. Multipolynomial resultant algorithms. J. Symbolic Computation, 15(2), (1993) 99-122. crossref(new window)

7.
J.H. McKay, S.S. Wang, A chain rule for the resultant of two polynomials, Arch. Math., 53, (1989) 347-351. crossref(new window)

8.
R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc., 51 (1985) 385-414. crossref(new window)

9.
R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika, 35, (1988) 101-113. crossref(new window)

10.
J.R. Silvester. Determinants of block matrices. Math. Gazette, 84 (501), Nov. (2000) 460-467. crossref(new window)

11.
B.L.van der Waerden, Algebra, Vol 1. New York, 1970. (translat from German edition, 1966)

12.
S.H. Weintraub, Galois Theory, New York, Springer Verlag, 2005.