JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUPERSTABILITY OF FUNCTIONAL INEQUALITIES ASSOCIATED WITH GENERAL EXPONENTIAL FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 4,  2010, pp.537-544
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.4.537
 Title & Authors
SUPERSTABILITY OF FUNCTIONAL INEQUALITIES ASSOCIATED WITH GENERAL EXPONENTIAL FUNCTIONS
Lee, Eun-Hwi;
  PDF(new window)
 Abstract
We prove the superstability of a functional inequality associated with general exponential functions as follows; . It is a generalization of the superstability theorem for the exponential functional equation proved by Baker.
 Keywords
Exponential functional equation;Stability of functional equation;Superstability;
 Language
English
 Cited by
1.
Hyperstability and Superstability, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
 References
1.
J. Baker, The stability of the cosine equations, Proc. Amer. Math. Soc. 80 (1980), 411-416. crossref(new window)

2.
J. Baker, J. Lawrence And F. Zorzitto, The stability of the equations, f(x+y)=f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.

3.
G. L. Forti, Hyers-Ulam stability of functional equations, in several variables, Aequationes Math. 50 (1995), 146-190. crossref(new window)

4.
R. Ger, Superstability is not natural, Rocznik Naukowo-Dydaktyczny WSP Krakkowie, Prace Mat. 159 (1993), 109-123.

5.
D.H. Hyers, On the stabliity of the linear functional equations, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. crossref(new window)

6.
D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequatioues Math. 44 (1992), 125-153. crossref(new window)

7.
D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of Stability of functional equations in Seeral variabler, Birkhauser-Basel-Berlin(1998).

8.
K.W. Jun, G,H. Kim and Y.W. Lee, Stability of generalized gamma and beta functional equations, Aequation Math. 60(2000), 15-24. crossref(new window)

9.
S.-M. Jung, On the gerneral Hyers-Ulam stability of gamma functional equation, Bull. Korean Marth. Sec. 34. No 3 (1997), 437-446.

10.
S.-M. Juug. On the stability of the gammer functional equations, Results Math. 33 (1998), 306-309. crossref(new window)

11.
G.H. Kim, and Y.W. Lee, The stability of the beta functional equation, Babes-Bolyai Mathematica, XLA (1)(2000), 89-96.

12.
Y.W. Lee, On the stability of a quadratic Jensen type functional equations, J. Math. Anal. Appl. 270 (2002) 590-601. crossref(new window)

13.
Y.W. Lee, The stability of derivations on Banach algebras, Bull. Institute of Math. Academia Sinica, 28 (2000), 113-116.

14.
Y.W. Lee and B..M. Choi, The stability of Cauchy's gamma-beta functional equation, J. Math. Anal. Appl. 299 (2004), 305-313. crossref(new window)

15.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

16.
Th.M. Rassias, On a problem of S. M. Ulam and the asymptotic stabilityl of the Cauchy functional equation with applications, General Inequalities 7. MFO. Oberwolfach. Birkhauser Verlag. Basel ISNM Vol 123 (1997), 297-309.

17.
Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia. Univ. Babes-Bolyai XLIII (3). (1998), 89-124.

18.
Th.M. Rassias, The problem of S. M. Ulam for approximately multiplication mappings, J. Math. Anal. Appl. 246 (2000), 352-378. crossref(new window)

19.
Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. crossref(new window)

20.
Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applications. Math. 62 (2000), 23-130. crossref(new window)

21.
Th.M. Rassias and P. Semrl, On the behavior of mapping that do not stability Hyers-Ulam stability, Proc. Amer. Math. soc. 114 (1992), 989-993. crossref(new window)

22.
S.M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. NewYork, 1964.