JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 4,  2010, pp.581-592
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.4.581
 Title & Authors
SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE
Kim, Yong-Sup; Hasanov, Anvar; Lee, Chang-Hyun;
  PDF(new window)
 Abstract
With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran`s function in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function .
 Keywords
Generalized hypergeometric series;Inverse pairs of symbolic operators;Decomposition formulas;Srivastava`s triple hypergeometric functions;Gauss function;Appell functions;Integral representations;
 Language
English
 Cited by
1.
APPLICATION OF THE OPERATOR H (α, β) TO THE SARAN FUNCTION FE AND SOME OTHER RESULTS,;;;

호남수학학술지, 2011. vol.33. 4, pp.441-452 crossref(new window)
1.
APPLICATION OF THE OPERATOR H (α, β) TO THE SARAN FUNCTION FEAND SOME OTHER RESULTS, Honam Mathematical Journal, 2011, 33, 4, 441  crossref(new windwow)
 References
1.
P. Appell and J. Kampe de Feriet, Finctions Hypergeometriques et Hyper-spheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.

2.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. crossref(new window)

3.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions. II, Quart. J. Math. Oxford Ser. 12(1941), 112-128. crossref(new window)

4.
T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942). 159-171. crossref(new window)

5.
A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill Book Company, New York, Toronto and London, 1953.

6.
A. Erdelyi, W. Megnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2. McGraw-Hill Book Company, New York, Toronto and London, 1953.

7.
A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. crossref(new window)

8.
A. Hasanov and E. T. Karimov, Fundamental solutions for a class of three-dimemsional elliptic equations with singular coefficients, Appl. Math. Lett. 22 (2009), 1828-1832. crossref(new window)

9.
A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella function $F_{A}^{(r)}$ and other multiple hypergeometric functions, Appl. Math. Lett. 19 (2006), 113-121. crossref(new window)

10.
A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl. 53(7) (2007), 1119-1128. crossref(new window)

11.
A. Hasanov, H. M. Srivastava, and M. Turaev, Decomposition formulas for some triple hypergeometric functions, J. Math. Anal. Appl. 324 (2006), 955-969. crossref(new window)

12.
G. Lauricella, Sulle funzioni ipergeomtriche a piu variablli, Rend. Cire. Mat. Palermo 7 (1893), 111-158. crossref(new window)

13.
O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions: Theory and algorithmic Tables, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1982.

14.
R. C. Pandey, On the expansions of hypergecmetric functions, Agra Univ. J. Res. Sci. 12 (1963), 159-169.

15.
E. G. Poole, Introduction to the Theory of Linear Differential Equations, Clarendon (Oxford University Press), Oxford, 1936.

16.
S. Saran, Hypergeometric functions of three variables, Ganita 5 (1956), 77-91.

17.
J . P. Singhal and S. S. Bhaiti, Certain expansions associated with hypergeometric functions of n variables, Glasnik Math. Ser. III 11(31) (1976), 239-245.

18.
H. M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo(Ser. 2) 7 (1967), 99-115. crossref(new window)

19.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.

20.
H. M. Srivastava and H. L. Monocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1984.