JOURNAL BROWSE
Search
Advanced SearchSearch Tips
YANG-MILLS CONNECTIONS ON CLOSED LIE GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 32, Issue 4,  2010, pp.651-661
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2010.32.4.651
 Title & Authors
YANG-MILLS CONNECTIONS ON CLOSED LIE GROUPS
Pyo, Yong-Soo; Shin, Young-Lim; Park, Joon-Sik;
  PDF(new window)
 Abstract
In this paper, we obtain a necessary and sufficient condition for a left invariant connection in the tangent bundle over a closed Lie group with a left invariant metric to be a Yang-Mills connection. Moreover, we have a necessary and sufficient condition for a left invariant connection with a torsion-free Weyl structure in the tangent bundle over SU(2) with a left invariant Riemannian metric g to be a Yang-Mills connection.
 Keywords
Yang-Mills connection;conjugate connection;torsion-free Weyl structure;
 Language
English
 Cited by
1.
RICCI AND SCALAR CURVATURES ON SU(3),;;;

호남수학학술지, 2012. vol.34. 2, pp.231-239 crossref(new window)
1.
RICCI AND SCALAR CURVATURES ON SU(3), Honam Mathematical Journal, 2012, 34, 2, 231  crossref(new windwow)
 References
1.
S. Dragomir, T. Ichiyamy and H. Urakawa, Yang-Mills theory and conjugate connections, Differential Geom. Appl. 18 (2003), 229-238. crossref(new window)

2.
S. Helgeson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

3.
M. Itob, Compact Einstein-Weyl manifolds and the associated constant, Osaka J. Math. 35 (1998), 567-578.

4.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York, 1963.

5.
Y. Matsushima, Differentiable Manifolds, Marcel Dekker, Inc, 1972.

6.
J. Milnor, Curvatures of left invariant metrics on Lie group, Adv. Math. 21 (1976), 293-329. crossref(new window)

7.
I. Mogi and M. Itob, Differential Geometry and Gauge Theory (in Japanese), Kyoritsu Publ., 1986.

8.
K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. crossref(new window)

9.
K. Normizu and T. Sasaki, Affine Differential Geometry - Geometry of Affine Immersions, Cambridge Univ. Press, 1994.

10.
J.-S. Park, Yang-Mills connections in orthonormal frame bundles over SU(2), Tsukuba J. Math. 18 (1994), 203-206.

11.
J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Inter. Inform. Sci. 11 (2005), 31-34.

12.
J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math 62 (2008), 217-220. crossref(new window)

13.
J.-S. Park, Yang-Mills connection with Weyl structure, Proc. Japan Academy, 84, Ser. A (2008), 129-132. crossref(new window)

14.
J.-S. Park, Invariant Yang-Mills connections with Weyl structure, J. of Geometry and Physics 60 (2010), 1950-1957. crossref(new window)

15.
J.-S. Park, Projectively flat Yang-Mills connections, Kyushu J. Math. 64 (2010), 49-58.

16.
H. Pedersen, Y. S. Poon and A. Swann, Einstein-Weyl deformations and sub-manifolds, Internat. J. Math. 7 (1996), 705-719. crossref(new window)

17.
Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc. 1981.

18.
Y.-S. Pyo, H. W. Kim and J.-S. Park, On Ricci curvatures of left invariant metrics on SU(2), Bull. Kor. Math, Soc. 46 (2009), 255-261. crossref(new window)

19.
K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on SU(2,C) and SO(3.R), Math. Japonica 26 (1981), 153-159.