JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NONEXISTENCE OF CONFORMAL DEFORMATIONS ON SPACE-TIMES (II)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 1,  2011, pp.121-127
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.1.121
 Title & Authors
THE NONEXISTENCE OF CONFORMAL DEFORMATIONS ON SPACE-TIMES (II)
Jung, Yoon-Tae;
  PDF(new window)
 Abstract
In this paper, when N is a compact Riemannian manifold, we discuss the nonexistence of conformal deformations on space-times $M
 Keywords
warped product;scalar curvature;conformal deformation;
 Language
English
 Cited by
1.
The Nonexistence of Conformal Deformations on Riemannian Warped Product Manifolds, Journal of the Chosun Natural Science, 2012, 5, 1, 42  crossref(new windwow)
 References
1.
P. Aviles and R. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, Diff. Geom. 27(1988), 225-239.

2.
J.K. Beem, P.E. Ehrlich and Th.G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M. Rassias, G.M. Rassias, eds.), North-Holland, 1982, 41-56.

3.
Y.T. Jung and S.C. Lee, The nonexistence of conformal deformations on space-times, Honam Math. J. 32(2010), 85-89. crossref(new window)

4.
J.L. Kazdan and F.W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J.Diff.Geo. 10(1975), 113-134.

5.
J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Guassian and scalar curvature, Ann. of Math. 101(1975), 317-331. crossref(new window)

6.
M.C.Leung, Conformal scalar curvature equations on complete manifolds, Comm. in P.D.E. 20 (1995), 367-417 crossref(new window)

7.
M.C. Leung, Conformal deformation of warped products and scalar curvature functions on open manifolds, preprint.

8.
M.C.Leung, Uniqueness of Positive Solutions of the Equation $\Delta_{g0}\;+\;c_nu\;=\;c_nu^{\frac{n+2}{n-2}}$ and Applications to Conformal Transformations, preprint.

9.
D.S. Mitrinovic, Analytic inequalities, Springer-Verlag, New York Heidelberge Berlin, 1970

10.
A. Ratto, M. Rigoli and G. Setti, On the Omori-Yau maximum principle and its applications to differential equations and geometry, J. Functional Analysis 134(1995), 486-510. crossref(new window)