JOURNAL BROWSE
Search
Advanced SearchSearch Tips
IDENTIFICATION METHOD FOR DIGITAL SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 1,  2011, pp.51-60
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.1.051
 Title & Authors
IDENTIFICATION METHOD FOR DIGITAL SPACES
Han, Sang-Eon;
  PDF(new window)
 Abstract
The aim of the paper is to develop an identification method for digital spaces and to study its digital homotopic properties related to a strong k-deformation retract.
 Keywords
digital k-graph;simple closed k-curve;digital k-fundamental group;strong k-deformation retract;identification method;adjunction space;
 Language
English
 Cited by
 References
1.
G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, 15 (1994), 1003-1011. crossref(new window)

2.
L. Boxer, Digitally continuous functions Pattern Recognition Letters 15 (1994), 833-839. crossref(new window)

3.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10 (1999), 51-62. crossref(new window)

4.
S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1)(2003) 153-162.

5.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. crossref(new window)

6.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1) (2005) 115-129.

7.
S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3)(2006), 332-348. crossref(new window)

8.
S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag Berlin, pp. 214-225, 2006.

9.
S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6)(2007) 1479-1503. crossref(new window)

10.
S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences 178 (2008) 2091-2104. crossref(new window)

11.
S.E. Han, Equivalent ($k_0,\;k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008) 550-561. crossref(new window)

12.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1) (2008) 1-16. crossref(new window)

13.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, (1987), 227-234.

14.
T.Y. Kong, A. Rosenfeld, Digital topology - A brief introduction and bibliography) Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

15.
A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979) 76-87.

16.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.