JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MARCINKIEWICZ ZYGMUND LAWS OF LARGE NUMBERS FOR NEGATIVELY DEPENDENT RANDOM FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 2,  2011, pp.163-171
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.2.163
 Title & Authors
ON THE MARCINKIEWICZ ZYGMUND LAWS OF LARGE NUMBERS FOR NEGATIVELY DEPENDENT RANDOM FIELDS
Ko, Mi-Hwa;
  PDF(new window)
 Abstract
In this paper we provide extensions of the Marcinkiewicz Zygmund laws of large numbers for i.i.d random variables with multidimensional indices to the case of negatively dependent random fields.
 Keywords
Marcinkiewicz Zygmund laws of large numbers;Almost sure convergence;Random field;Negative quadrant dependence;Negative association;
 Language
English
 Cited by
 References
1.
Etemati, N.(1981) An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 119-122 crossref(new window)

2.
Gabriel, J-P.(1977) An inequality for sums of independent random variables indexed by finite dimensional filtering sets and applications to the convergence of series, Ann. Probab. 5 779-786 crossref(new window)

3.
Gut, A.(1978) Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, Ann. Probab. 6 469-482 crossref(new window)

4.
Gut, A.(1980) Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices, Ann. Probab. 8 298-313 crossref(new window)

5.
Gut, A. and Spataru, A.(2003) Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables, J. Multi. Anal. 86 398-442 crossref(new window)

6.
Hardy, G.H. and E.M. Wright(1954) An Introduction to the Theory of Numbers, 3rd Edition, Oxford University Press, Oxford

7.
Joag-Dev, K. and F. Proschan(1983) Negative association of random variables with applications, Ann. Statist. 11 286-295 crossref(new window)

8.
Ko, M.H.(2011) On the complete convergence for negatively associated random fields, Taiwan J. Math. 15 171-179

9.
Lehmann, E.L.(1966) Some concepts of dependence, Ann. Math. Statist. 37 1137-1153 crossref(new window)

10.
Matula, P.(1992) A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 209-213 crossref(new window)

11.
Moore, C.N.(1966) Summable Series and Convergence Factors, Dover, New York

12.
Titchmarsh, E.C.(1951) The Theorey of the Rieman Zeta-Function, Oxford University Press, Oxford