JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HIGHER ORDER GENOCCHI, EULER POLYNOMIALS ASSOCIATED WITH q-BERNSTEIN TYPE POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 2,  2011, pp.173-179
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.2.173
 Title & Authors
HIGHER ORDER GENOCCHI, EULER POLYNOMIALS ASSOCIATED WITH q-BERNSTEIN TYPE POLYNOMIALS
Arac, Serkan; Erdal, Dilek;
  PDF(new window)
 Abstract
The main aim of this paper is to give some relationships between q-Bernstein, higher order genocchi and Euler polynomials.
 Keywords
Generating function;Higher order Euler polynomials;Higher order Genocchi polynomials;Mellin transformation;Zeta function;q-Bernstein polynomials;
 Language
English
 Cited by
1.
THEOREMS ON APOSTOL-EULER POLYNOMIALS OF HIGHER ORDER ARISING FROM EULER BASIS,;

Advanced Studies in Contemporary Mathematics, 2013. vol.23. 2, pp.337-345
 References
1.
M. Acikgoz, and Y. Simsek, A New generating function of q-Bernstein type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12 pages, doi: 10.1155/2010/769095.01-313. crossref(new window)

2.
M. Acikgoz, S. Araci, and I. N.Cangul, A Note on the modified q-Bernstein polynomials for functions of several variables and their reflections on q-Volkenborn integration, Applied Mathematics and Computation(in press)

3.
M. Acikgoz, and S. Araci, On the generating function of Bernstein polynomials, in proceedings of the 8th International conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP, Rhodes, Greece, March 2010.

4.
L. C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15(1948), 987-1000. crossref(new window)

5.
I. N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. 19 (2009), 39-57

6.
J. Choi, D. S. Jang and H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19 (2008), 65-79. crossref(new window)

7.
J. Choi and H. M. Srivastava, The multiple Hurwitz Zeta function and the multiple Hurwitz-Euler Eta function, Taiwanese J. Math. 15 (2011), in press

8.
V. Kac, P. Cheung, Quantum Calculus. Springer, 128 , 2001.

9.
T. Kim, A New Approach to q-Zeta Function, Adv. Stud. Contemp. Math. 11 (2) 157-162.

10.
T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465. crossref(new window)

11.
T. Kim, On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT] crossref(new window)

12.
T. Kim, A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8. crossref(new window)

13.
C-S. Ryoo, T. Kim, B. Lee, and J. Choi, On the generalized q-Genocchi numbers and polynomials of higher order, Advances in Difference Equations, Volume 2011, Article ID 424809, 8page, doi: 10.1155/2011/424809 crossref(new window)

14.
T. Kim, On a p-adic interpolation function for the q-extension of the generalized Bernoulli polynomials and its derivative, Discrete Mathematics, 309(6) (2009), 1593-1602. crossref(new window)

15.
T. Kim, On p-adic q-l-functions and sums of powers, Journal of Mathematical Analysis and Applications, 329(2) (2007), 1472-1481. crossref(new window)

16.
T. Kim, On p-adic q-L-functions and sums of powers, Discrete Mathematics, 252 (2002),179-187. crossref(new window)

17.
T. Kim, On a q-Analogue of thep-Adic Log Gamma Functions and Related Integrals, Journal of Number Theory, 76(2) (1999), 320-329. crossref(new window)

18.
Q.-M. Luo, q-Extensions for the Apostol-Genocchi Polynomials, General Mathematics, 17(2) (2009), 113-125

19.
Q.-M. Luo, Apostol-Euler Polynomials of Higher Order and Gaussian Hypergeometric Functions, Taiwanse Journal of Mathematics, 10 (4) (2006), 917-925.