JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMI-PRIMITIVE ROOT MODULO n
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 2,  2011, pp.181-186
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.2.181
 Title & Authors
SEMI-PRIMITIVE ROOT MODULO n
Lee, Ki-Suk; Kwon, Mi-Yeon; Kang, Min-Kyung; Shin, Gi-Cheol;
  PDF(new window)
 Abstract
Consider a multiplicative group of integers modulo n, denoted by . Any element n is said to be a semi-primitive root if the order of a modulo n is (n)/2, where (n) is the Euler phi-function. In this paper, we classify the multiplicative groups of integers having semi-primitive roots and give interesting properties of such groups.
 Keywords
Multiplicative group of integers modulo n;primitive roots;semi-primitive roots;
 Language
English
 Cited by
1.
MULTIPLICATIVE GROUPS OF INTEGERS WITH SEMI-PRIMITIVE ROOTS MODULO n,;;;

대한수학회논문집, 2013. vol.28. 1, pp.71-77 crossref(new window)
1.
MULTIPLICATIVE GROUPS OF INTEGERS WITH SEMI-PRIMITIVE ROOTS MODULO n, Communications of the Korean Mathematical Society, 2013, 28, 1, 71  crossref(new windwow)
 References
1.
M. Abramowitz, I. A. Stegunl, Handbook of Mathematical Functions, Dover Publication, New York, 1964.

2.
C. F. Gauss; A. A. Clarke (translator into English), Disquisitiones Arithemeticae, Springer, New York, 1986.

3.
H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhauser, Boston, 1994.

4.
H. E. Rose, A Course in Number Theory, Oxford University Press Inc., New York, 1994

5.
J. K. Strayer, Elementary Number Theory, Waveland Press, Inc., 2002.