JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN TRANSFORM, CONVOLUTION AND THE FIRST VARIATION ON YEH-WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 2,  2011, pp.207-221
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.2.207
 Title & Authors
RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN TRANSFORM, CONVOLUTION AND THE FIRST VARIATION ON YEH-WIENER SPACE
Kim, Bong-Jin; Kim, Byoung-Soo;
  PDF(new window)
 Abstract
We examine the various relationships that exist among the Fourier-Yeh-Feynman transform, convolution and the first variation for functionals on Yeh-Wiener space that belong to a Banach algebra S(Q).
 Keywords
Yeh-Wiener space;Fourier-Yeh-Feynman transform;convolution;first variation;
 Language
English
 Cited by
1.
FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FOURIER-TYPE FUNCTIONALS ON WIENER SPACE,;

East Asian mathematical journal , 2013. vol.29. 5, pp.467-479 crossref(new window)
1.
FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FOURIER-TYPE FUNCTIONALS ON WIENER SPACE, East Asian mathematical journal , 2013, 29, 5, 467  crossref(new windwow)
 References
1.
J.M. Ahn, K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar. 100 (2003), 215-235. crossref(new window)

2.
R.H. Cameron and D.A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30. crossref(new window)

3.
R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer-Verlag, Berlin, 1980, 18-67.

4.
K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transforms Spec. Funct. 16 (2005), 391-405. crossref(new window)

5.
K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transforms Spec. Funct. 10 (2000), 179-200. crossref(new window)

6.
K.S. Chang, B.S. Kim and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math. 30 (2000), 823-842. crossref(new window)

7.
T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. crossref(new window)

8.
T. Hu man, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261. crossref(new window)

9.
G.W. Johnson and D.L. Skoug, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127. crossref(new window)

10.
B.J. Kim, B.S. Kim and I. Yoo, Integral transforms of functionals on a function space of two variables, J. Chungcheong Math. Soc. 23 (2010), 349-362.

11.
B.S. Kim, Integral transforms of square integrable functionals on Yeh-Wiener space, Kyungpook Math. J. 49 (2009), 155-166. crossref(new window)

12.
B.S. Kim and Y.K. Yang, Fourier-Yeh-Feynman transform and convolution on Yeh-Wiener space, Korean J. Math. 16 (2008), 335-348.

13.
C. Park, D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468. crossref(new window)

14.
D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1175. crossref(new window)

15.
J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433-450. crossref(new window)

16.
J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973.