JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 2,  2011, pp.231-246
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.2.231
 Title & Authors
CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY
Han, Sang-Eon;
  PDF(new window)
 Abstract
Let be a Khalimsky topological n dimensional subspace with digital k-connectivity. In relation to the classification of spaces , by comparing several kinds of continuities and homeomorphisms, the paper proposes a category which is suitable for studying the spaces .
 Keywords
Khalimsky topology;Khalismky continuity;digital connectivity;homeomorphism;
 Language
English
 Cited by
1.
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY,;;

호남수학학술지, 2012. vol.34. 3, pp.451-465 crossref(new window)
1.
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY, Honam Mathematical Journal, 2012, 34, 3, 451  crossref(new windwow)
 References
1.
P. Alexandorff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.

2.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999) 51-62. crossref(new window)

3.
S. E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91. crossref(new window)

4.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005) 115-129.

5.
S.E. Han, Continuities and homeomorphisms in computer topology and their applications, Journal of the Korean Mathematical Society 45(4)(2008) 923-952. crossref(new window)

6.
S.E. Han, Equivalent ($k_0,\,k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008) 550-561. crossref(new window)

7.
S.E. Han, Map preserving local properties of a digital image, Acta Applicandae Mathematicae, 104(2) (2008) 177-190. crossref(new window)

8.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31(1) (2008) 1-16. crossref(new window)

9.
S.E. Han, KD-($k_0,\,k_1$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5)(2010) 1031-1054. crossref(new window)

10.
S.E. Han, N.D. Georgiou, On computer topological function space, Journal of the Korean Mathematical Society 46(4) (2009) 841-857. crossref(new window)

11.
S.E. Han and B.G. Park, Digital graph ($k_0,\,k_1$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm(2003).

12.
E. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Applications, 36(1)(1990) 1-17. crossref(new window)

13.
In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Applicandae Mathematicae 110 (2010) 399-408. crossref(new window)

14.
T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

15.
E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology and Its Applications 153(2005) 52-65. crossref(new window)

16.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986) 177-184. crossref(new window)