JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON BRAID-PLAT RELATIONS IN CONWAY FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 3,  2011, pp.407-418
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.3.407
 Title & Authors
ON BRAID-PLAT RELATIONS IN CONWAY FUNCTION
Yun, Ki-Heon;
  PDF(new window)
 Abstract
There are two kinds of closing method for a given braid , a braid closure and a plat closure . In the article, we find a relation between the Conway potential function of braid closure and of plat closure .
 Keywords
Conway potential function;braid;plat;
 Language
English
 Cited by
 References
1.
J. S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J., 1974, Annals of Mathematics Studies, No. 82.

2.
J. S. Birman and Taizo Kanenobu, Jones' braid-plat formula and a new surgery triple, Proc. Amer. Math. Soc. 102 (1988), no. 3, 687-695. MR89c:57003

3.
R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Inventiones Mathematicae 134 (1998), 363-400. crossref(new window)

4.
J. A. Hillman, The Torres conditions are insufficient, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 19-22. crossref(new window)

5.
J. Hoste, Sewn-up r-link exteriors, Pacific J. Math. 112 (1984), no. 2, 347-382. crossref(new window)

6.
M. E. Kidwell, Alexander polynomials of links of small order, Illinois J. Math. 22 (1978), no. 3, 459-475.

7.
J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141. crossref(new window)

8.
J. Levine, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69-84. crossref(new window)

9.
J. W. Morgan, Tomasz S. Mrowka, and Zoltan Szabo, Product formulas along $T^3$ for Seiberg-Witten invariants, Math. Res. Lett. 4 (1997), no. 6, 915-929. crossref(new window)

10.
H. R. Morton, Fibred knots with a given Alexander polynomial, Knots, braids and singularities (Plans-sur-Bex, 1982), Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 205-222.

11.
H. R. Morton, The multivariable Alexander polynomial for a closed braid, Low Dimensional Topology, Contemporary Mathematics, vol. 233, American mathematical Society, 1998, pp. 167-172.

12.
J. Murakami, A state model for the multivariable Alexander polynomial, Pacific J. Math. 157 (1993), no. 1, 109-135. crossref(new window)

13.
H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110(1935), no. 1, 571-592. crossref(new window)

14.
G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57-89. crossref(new window)

15.
V.G Turaev, Reidermeister torsion in knot theory, Russian math. Surveys 41 (1986), no. 1, 119-182.

16.
V.G Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2001, Notes taken by Felix Schlenk.