JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 4,  2011, pp.499-518
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.4.499
 Title & Authors
INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS
Kang, Hee-Won;
  PDF(new window)
 Abstract
We obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and some properties preserved by a ring homomorphism. Furthermore, we introduce the concepts of interval-valued fuzzy coset and study some of it`s properties.
 Keywords
interval-valued fuzzy subgroup;interval-valued fuzzy coset;
 Language
English
 Cited by
1.
Interval-valued Fuzzy Normal Subgroups,;;;

International Journal of Fuzzy Logic and Intelligent Systems, 2012. vol.12. 3, pp.205-214 crossref(new window)
2.
Interval-Valued Fuzzy Ideals of a Ring,;;;

International Journal of Fuzzy Logic and Intelligent Systems, 2012. vol.12. 3, pp.198-204 crossref(new window)
3.
Interval-Valued Fuzzy Cosets,;;;

한국지능시스템학회논문지, 2012. vol.22. 5, pp.646-655 crossref(new window)
4.
INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS,;;;

호남수학학술지, 2013. vol.35. 3, pp.525-540 crossref(new window)
5.
Interval-Valued Fuzzy Congruences on a Semigroup,;;;

International Journal of Fuzzy Logic and Intelligent Systems, 2013. vol.13. 3, pp.231-244 crossref(new window)
6.
INTERVAL-VALUED FUZZY SUBGROUPS,;;;

호남수학학술지, 2013. vol.35. 4, pp.565-582 crossref(new window)
7.
Lattices of Interval-Valued Fuzzy Subgroups,;;;

International Journal of Fuzzy Logic and Intelligent Systems, 2014. vol.14. 2, pp.154-161 crossref(new window)
8.
Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP,;;;

호남수학학술지, 2015. vol.37. 1, pp.29-40 crossref(new window)
1.
INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS, Honam Mathematical Journal, 2013, 35, 3, 525  crossref(new windwow)
2.
INTERVAL-VALUED FUZZY SUBGROUPS, Honam Mathematical Journal, 2013, 35, 4, 565  crossref(new windwow)
3.
Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP, Honam Mathematical Journal, 2015, 37, 1, 29  crossref(new windwow)
4.
Interval-valued Fuzzy Normal Subgroups, International Journal of Fuzzy Logic and Intelligent Systems, 2012, 12, 3, 205  crossref(new windwow)
5.
Lattices of Interval-Valued Fuzzy Subgroups, International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14, 2, 154  crossref(new windwow)
6.
Interval-Valued Fuzzy Congruences on a Semigroup, International Journal of Fuzzy Logic and Intelligent Systems, 2013, 13, 3, 231  crossref(new windwow)
7.
INTERVAL-VALUED FUZZY GROUP CONGRUENCES, Honam Mathematical Journal, 2016, 38, 2, 403  crossref(new windwow)
 References
1.
R.Biswas,Rosenfeld's fuzzy subgroups with interval-valued membership func- tions, Fuzzy set and systems 63(1995) 87-90.

2.
J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32[4](2010), 711-738. crossref(new window)

3.
M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17. crossref(new window)

4.
K. Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations, J.Korean Institute of Intelligent systems 19(3)(2009)425-432 crossref(new window)

5.
H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617. crossref(new window)

6.
T.K.Mondal and S.K.Samanta,Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999) 20-38.

7.
L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965),338-353. crossref(new window)

8.
K. Hur, H.W.Kang and H.K.Song,Intuitionistic fuzzy subgroups and subrings, Honam Math.J.25(1)(2003),19-41.

9.
L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform.Sci 8(1975) 199-249. crossref(new window)