JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SCALAR CURVATURES ON SU(3)/T(k, l)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 33, Issue 4,  2011, pp.547-556
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2011.33.4.547
 Title & Authors
SCALAR CURVATURES ON SU(3)/T(k, l)
Pyo, Yong-Soo; Shin, Hyun-Ju; Park, Joon-Sik;
  PDF(new window)
 Abstract
In this paper, we estimated the Ricci curvature and the scalar curvature on SU(3)/T (k, l) under the condition (k, l) (), where the four isotropy irreducible representations in SU(3)/T (k, l) are, not necessarily, mutually equivalent or inequivalent.
 Keywords
53C30;53C25;
 Language
English
 Cited by
1.
VARIATIONS OF THE LENGTH INTEGRAL,;;;

호남수학학술지, 2014. vol.36. 1, pp.141-146 crossref(new window)
1.
VARIATIONS OF THE LENGTH INTEGRAL, Honam Mathematical Journal, 2014, 36, 1, 141  crossref(new windwow)
 References
1.
S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97. crossref(new window)

2.
A. L. Besse, Einstein Manifolds, Springer Verlag (1987).

3.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol. 2, 1969, John Wiley and Sons, New York.

4.
M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486.

5.
K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. crossref(new window)

6.
J.-S. Park, Stability of the identity map of SU(3)=T (k; l), Tokyo J. Math. 17(2) (1994), 281-289. crossref(new window)

7.
J.-S. Park, Ricci curvatures on SU(3)=T (k; l), to appear.

8.
H. Urakawa, Numerical computation of the spectra of the Laplacian on 7- dimensional homogeneous manifolds SU(3)/$T_{k,l}$, SIAM J. Math. Anal. 15 (1984), 979-987. crossref(new window)

9.
H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homo- geneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.

10.
N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.

11.
M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28. crossref(new window)