JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 1,  2012, pp.103-111
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.1.103
 Title & Authors
LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES
Chai, Y.D.; Lee, Young-Soo;
  PDF(new window)
 Abstract
Wetzel[5] proved if is a closed curve of length L in , then lies in some ball of radius [L/4]. In this paper, we generalize Wetzel`s result to the non-Euclidean plane with much stronger version. That is to develop a lower bound of length of a triangle inscribed in a circle in non-Euclidean plane in terms of a chord of the circle.
 Keywords
circle;diameter;hyperbolic plane;minimum chord;spherical geometry;
 Language
English
 Cited by
 References
1.
G. D. Chakerian and M. S. Klamkin, Inequalities for sums of distances, Amer. Math. Monthly, 80 (1973), 1009-1017. crossref(new window)

2.
M. Ghandehari, Sums of distances in normed spaces, Acta Math. Hungar., 67(1995), 123-129. crossref(new window)

3.
L. M. Kells, W. F. Kern, and T. R. Bland,Plane and Spherical Trigonometry, McGraw-Hill Inc., New York, 1951.

4.
D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Raume, Math. Z., 61(1954) 235-244. crossref(new window)

5.
J. E Wetzel, Covering balls for curves of constant length, L'Enseignement Math., 17(1971) 275-277.