JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FIXED POINT APPROACH TO THE STABILITY OF THE MIXED TYPE FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 1,  2012, pp.19-34
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.1.19
 Title & Authors
A FIXED POINT APPROACH TO THE STABILITY OF THE MIXED TYPE FUNCTIONAL EQUATION
Jin, Sun-Sook; Lee, Yang-Hi;
  PDF(new window)
 Abstract
In this paper, we investigate the stability of a functional equation f(x+y+z)-f(x+y)-f(y+z)-f(x+z)+f(x)+f(y)+f(z)
 Keywords
Hyers-Ulam-Rassias stability;fixed point method;mixed type functional equation;
 Language
English
 Cited by
1.
A FIXED POINT APPROACH TO THE STABILITY OF THE GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION OF DEGREE 2,;;

대한수학회논문집, 2013. vol.28. 2, pp.269-283 crossref(new window)
1.
A FIXED POINT APPROACH TO THE STABILITY OF THE GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION OF DEGREE 2, Communications of the Korean Mathematical Society, 2013, 28, 2, 269  crossref(new windwow)
2.
On the Generalized Hyers-Ulam Stability of ann-Dimensional Quadratic and Additive Type Functional Equation, Journal of Applied Mathematics, 2014, 2014, 1  crossref(new windwow)
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66. crossref(new window)

2.
L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Math. Soc. Japan.J. Inequal. Pure Appl. Math. 4(1) (2003), Art. 4

3.
L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.

4.
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a xed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl- Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.

5.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. crossref(new window)

6.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. crossref(new window)

7.
K.-W. Jun and Y .-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the pexiderized quadratic equations, II, Kyungpook Math. J. 47 (2007), 91-103.

8.
S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. crossref(new window)

9.
G.-H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl. 4 (2001), 257-266.

10.
H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372. crossref(new window)

11.
Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403. crossref(new window)

12.
Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. crossref(new window)

13.
Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl. 246 (2000), 627-638. crossref(new window)

14.
Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369. crossref(new window)

15.
B. Margolis and J. B. Diaz, A xed point theorem of the alternative for contrac- tions on a generalized complete metric space, Proc. Amer. Math. SocBull. Amer. Math. Soc. 74 (1968), 305-309.

16.
J. M. Rassias, On the Ulam stability of mixed type mappings on restricted do- mains Journal of Mathematical Analysis and Applications, J. Math. Anal. Appl. 276 (2002), 747-762. crossref(new window)

17.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

18.
I.A. Rus, Principles and applications of xed point theory, Ed. Dacia, Cluj-Napoca (1979)(in Romanian)

19.
S.M. Ulam, A collection of mathematical problems, Interscience, New York, 1968, p. 63