JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ONVOLUTION SUM Σm<n/8σ1(2m)σ1(n-8m)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 1,  2012, pp.63-76
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.1.63
 Title & Authors
ONVOLUTION SUM Σm<n/8σ1(2m)σ1(n-8m)
Kim, Dae-Yeoul; Kim, Ae-Ran; Park, Hwa-Sin;
  PDF(new window)
 Abstract
In this paper, we present the convolution sum < evaluated for all .
 Keywords
Divisor functions;Convolution sums;Corresponding author;
 Language
English
 Cited by
 References
1.
A. Alaca, S. Alaca and K. S. Williams, The convolution sum $\sum_{m, Canad. Math. Bull. 51 (2008), 3-14. crossref(new window)

2.
L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea Publ. Co., New York, 1952.

3.
J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Elementary Evalu- ation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (2002), 229-274.

4.
D. Kim and M. S. Kim, Divisor functions and Weierstrass functions arising from q series, accepted to Bull. of Korean Math. Soc.

5.
D. Kim, H. Park and A. Kim, Arithmetic identities arising from the basic hyper- geometric series and elliptic curve, Submitted.

6.
S. Lang, Elliptic functions, Addison-Wesley, 1973.

7.
J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer- Verlag, 1994.

8.
K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.