JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 1,  2012, pp.77-84
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.1.77
 Title & Authors
COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE
Park, Jong-Seo;
  PDF(new window)
 Abstract
In this paper, we define the weakly commuting mapping and prove the fixed point theorem for weakly commuting mappings under some conditions on intuitionistic fuzzy metric spaces.
 Keywords
Weakly commuting map;common fixed point;continuity;
 Language
English
 Cited by
 References
1.
Altun, I., Turkoglu, D., 2008. Some fixed point theorems on fuzzy metric spaces with implicit relations. Comm. Korean Math. Soc. 23(1), 111-124. crossref(new window)

2.
Cho, Y.J., 1997. Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5(4), 949- 962.

3.
Grabiec, M., 1988. Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27, 385-389. crossref(new window)

4.
Imdad, M., Kumar, S., Khan, M.S., 2002. Remarks on some fixed point theorems satisfying implicit relations. Rad. Math. 11, 135-143.

5.
Jungck, G., 1976. Commuting mappings and fixed points. Amer. Math. Monthly 83, 261-263. crossref(new window)

6.
Kaleva, O., Seikkala, S., 1984. On fuzzy metric spaces. Fuzzy Sets and Systems 12, 215-229. crossref(new window)

7.
Kramosil,J., Michalek J., 1975. Fuzzy metric and statistical metric spaces. Ky- bernetica 11, 326-334.

8.
Lee, Y.C., 2009. Common fixed point theorems for weakly commuting mappings in fuzzy metric spaces. Graduate School of Education, Gyeongsang University of Education.

9.
Park, J.H., Park, J.S., Kwun, Y.C., 2006. A common fixed point theorem in the intuitionistic fuzzy metric space. Advances in Natural Comput. Data Min- ing(Proc. 2nd ICNC and 3rd FSKD), 293-300.

10.
Park, J.S., Park, J.H., Kwun, Y.C., 2008. On some results for ve mappings using compatibility of type($\alpha$) in intuitionistic fuzzy metric space. International J. Fuzzy Logic Intelligent Systems 8(4), 299-305. crossref(new window)

11.
Schweizer, B., Sklar, A., 1960. Statistical metric spaces. Pacific J. Math. 10, 314-334.