JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NUMBER OF POINTS ON ELLIPTIC CURVES EA0:y2=x3+Ax OVER p MOD 24
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 1,  2012, pp.93-101
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.1.93
 Title & Authors
THE NUMBER OF POINTS ON ELLIPTIC CURVES EA0:y2=x3+Ax OVER p MOD 24
Park, Hwa-Sin; You, Soon-Ho; Kim, Dae-Yeoul; Kim, Min-Hee;
  PDF(new window)
 Abstract
Let denote the elliptic curve . In this paper, we calculate the number of points on elliptic curves over mod 24. For example, if (mod 24) is a prime, (mod p) and A(-1 + 2t) is a quartic residue modulo p, then the number of points in is congruent to 0 modulo 24.
 Keywords
elliptic curves;
 Language
English
 Cited by
1.
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x3 + Ax AND y2 = x3 + B3 MOD 24,;;

대한수학회논문집, 2013. vol.28. 3, pp.433-447 crossref(new window)
1.
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2= x3+ Ax AND y2= x3+ B3MOD 24, Communications of the Korean Mathematical Society, 2013, 28, 3, 433  crossref(new windwow)
 References
1.
H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer-verlag, Berlin, 1993, 198-199.

2.
L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13(1906), 1-8. crossref(new window)

3.
M. Demirci, Y. N. Ikikardes, G. Soydan and I. N. Cangul, Frey Elliptic Curves $E : y^{2} = x^{3} - n^{2}x$ on finite field $\mathbb{F}_{p}$ where $p\equiv1$ (mod 4) is prime, to be printed.

4.
M. Demirci, G. Soydan and I. N. Cangul, Rational points on Elliptic Curves $E:y^{2}-x^{3}-n^{2}$ in $E:y^{2}=x^{3}+cx over\/\mathbb{F}_{p}\/mod\/8$ where $p\equiv1$ (mod 4) is prime, Rocky Mountain Journal of Mathematics, 37, no 5, 2007.

5.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1981.

6.
I. Inam, G. Soydan, M. Demirci, O. Bizim and I. N. Cangul, Corrigendum on "The Number of Points on Elliptic Curves $E:y^{2}=x^{3}+cx over\/F_{p}\/mod\/8$ ", Commun. Korean Math. Soc. 22 (2007), no. 2, 207-208. crossref(new window)

7.
N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, Classification of the Bachet Elliptic Curves $y^{2}=x^{3}+a^{3}\/in\/\mathbb{F}_{p},\/where\/p\equiv1\/(mod 6)$ is Prime, Int. J. Math. Sci. (WASET) 1 (2007), no. 4, 239-241.

8.
N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, Rational points on Frey Elliptic Curves $E:y^{2}=x^{3}-n^{2}x$, Adv. Stud. Contemp. Math. (Kyung- shang) 14 (2007), no. 1, 69-76.

9.
A. W. Knapp, Elliptic curves, Princeton Uinversity Press, New Jersey 1992.

10.
D. Kim, J. K. Koo and Y. K. Park, On the elliptic curve modulo p, Journal of Number Theory 128(2008), 945-953. crossref(new window)

11.
H. Park, D. Kim and E. Lee, The numbers of points elliptic curves $E:y^{2}=x^{3}+cx\/over\/\mathbb{F}_{p}\/mod\/8$, Commun. Korean Math. Soc. 18 (2003), 31-37. crossref(new window)

12.
R. Schoof, Counting points on elliptic curves over finite fields, Journal de The-orie des Nomvres de Bordeaux, 7(1995), 219-254. crossref(new window)

13.
J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathe-matics, 106. Springer-Verlag, New York, 1992.

14.
L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten algebraischer Zahlkorper, in:Verh. I. Internat. Math. Kongress, Zurich, 1987, 182-193.