JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MINIMAXNESS OF LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 2,  2012, pp.161-169
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.2.161
 Title & Authors
MINIMAXNESS OF LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Abbasi, A.; Roshan Shekalgourabi, H.;
  PDF(new window)
 Abstract
Let R be a commutative Noetherian ring and I, J be ideals of R. We introduced the notion of (I; J)-cominimax R-modules. For an integer and an R-module M, let be an (I; J)-cominimax R-module for all <. The J-minimaxness of some Ext modules of is investigated. Among of the obtaining results, there is a generalization of the main result of [1].
 Keywords
Local cohomology modules;J-minimax modules;(I, J)-cominimax modules;
 Language
English
 Cited by
 References
1.
J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, Proc. Amer. Math. Soc. 137 (2009), no. 2, 439-448.

2.
M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), no. 2, 173-181. crossref(new window)

3.
K. Divaani-Aazar and M. Esmkhani, Artinianness of local cohomology modules of ZD-modules, Comm. Algebra 33 (2005), 2857-2863. crossref(new window)

4.
L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc. 107 (1990), 267-271. crossref(new window)

5.
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), 649-668. crossref(new window)

6.
R. Takahashi, Y. Yoshino, and T. Yoshizawa, Local cohomology based on a non- closed support de ned by a pair of ideals, J. Pure Appl. Algebra 213 (2009), no. 4, 582-600. crossref(new window)

7.
A. Tehranian and A. Pour Eshmanan Talemi, Cofiniteness of local cohomology based on a nonclosed support de ned by a pair of ideals, Bull. Iranian. Math. Soc. 36 (2010), no. 2, 145-155.

8.
P. Vamos and D.W. Sharpe, Injective modules, Cambridge University Press, London-New York, 1972.

9.
W. Vasconcelos, Divisor theory in module categories, North-Holland Publishing Company, Amsterdam, 1974.

10.
H. Zoschinger, Minimax-moduln, J. Algebra 102 (1986), 1-32. crossref(new window)