JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 2,  2012, pp.241-252
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.2.241
 Title & Authors
ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES
Choi, Jeong-Yeol; Kim, So-Youn; Baek, Jong-Il;
  PDF(new window)
 Abstract
Let be a sequence of LNQD which are dominated randomly by another random variable X. We obtain the complete convergence and almost sure convergence of weighted sums for LNQD by using a new exponential inequality, where is an array of constants. As corollary, the results of some authors are extended from i.i.d. case to not necessarily identically LNQD case.
 Keywords
Strong law of large numbers;almost sure convergence;arrays;linearly negative quadrant random variables;
 Language
English
 Cited by
 References
1.
Alam, K., and Saxena,K. M. L.(1981). Positive dependence in multivariate distributions. Commun. Statist. Theor. Meth, A10, 1183-1196.

2.
Baek, J. I., Niu, S.L., Lim, P. K., Ahn, Y. Y. and Chung, S.M.(2005). Almost sure convergence for weighted sums of NA random variables. Journal of the Korean Statistical Society, 32(4), 263-272.

3.
Baek, J. I., Park, S.T., Chung, S. M., Liang, H. Y. and Lee, C. Y.(2005). On the complete convergence of weighted sums for dependent random variables. Journal of the Korean Statistical Society, 34(1), 21-33.

4.
Baek, J. I., Park, S.T., Chung, S. M., and Seo, H. Y.(2005). On the almost sure convergence of weighted sums of negatively associated random variables. Comm.Kor.Math.Soci 20(3), 539-546. crossref(new window)

5.
Bai, Z. D. and Cheng, P. E.(2000). Marcinkiewicz strong laws for linear statistics. Statist. & Probab. Lett. 46, 105-112. crossref(new window)

6.
Cai, Z. and Roussas, G. G.(1997). Smooth estimate of quantiles under association. Stat.& Probab.Lett. 36, 275-287. crossref(new window)

7.
Chow, Y. S. and Lai, T. L.(1973). Limit behaviour of weighted sums of independent random variables. Ann. Probab. 1, 810-824. crossref(new window)

8.
Cuzick, J.(1995). A strong law for weighted sums of i.i.d. random variables. J. Theoret. Probab. 8, 625-641. crossref(new window)

9.
Joag-Dev, K. and Proschan, F.(1983). Negative association of random variables with applications. Ann. Statist. 11, 286-295. crossref(new window)

10.
Karlin,S., Rinott,R.(1980). Classes of ordering measures and related correlation inequalities. II. Multivariate reverse rule distributions. Journal of Multivariate Analy. 10 , 499-516. crossref(new window)

11.
Ko, M. H., Ryu, D. H., & Kim, T. S.(2007). Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables. Taiwanese Journal of Mathematics, 11(2), 511-522.

12.
Liang, H. Y., Zhang, D. X., and Baek, J.L.(2004). Convergence of weighted sums for dependent random variables. Jour.Kor.Math.Soc., 41(5), 883-894. crossref(new window)

13.
Liang,H. Y.(2000). Complete convergence for weighted sums of negatively associated random variables. Statist.&Probab.Lett. 48 , 317-325. crossref(new window)

14.
Lehmann, E. L.(1966). Some concepts of dependence. The Annals of Mathematical Statistics, 37, 1137-1153. crossref(new window)

15.
Matula,P.(1992). A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15 , 209-213. crossref(new window)

16.
Newman, C. M.(1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong(Ed.)., Statistics and probability, vol. 5(pp. 127-140). Hayward, CA: Inst. Math. Statist.

17.
Roussas, G. G.(1994). Asymptotic normality of random fields of positively or negatively associated processes. J. Multiv. Analysis, 50 , 152-173. crossref(new window)

18.
Shao,Q. M., Su, C.(1999). The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl. 83 , 139-148. crossref(new window)

19.
Su,C. Qin,Y. S.(1997). Limit theorems for negatively associated sequences. Chinese Science Bulletin, 42, 243-246. crossref(new window)

20.
Sung, S.(2001). Strong laws for weighted sums of i.i.d.random variables. Statist. & Probab. Lett. 52, 413-419. crossref(new window)

21.
Wang, J., & Zhang, L.(2006). A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Mathematica Hungarica, 110(4), 293-308. crossref(new window)