JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONSTRUCTIVE APPROXIMATION BY GAUSSIAN NEURAL NETWORKS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 3,  2012, pp.341-349
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.3.341
 Title & Authors
CONSTRUCTIVE APPROXIMATION BY GAUSSIAN NEURAL NETWORKS
Hahm, Nahm-Woo; Hong, Bum-Il;
  PDF(new window)
 Abstract
In this paper, we discuss a constructive approximation by Gaussian neural networks. We show that it is possible to construct Gaussian neural networks with integer weights that approximate arbitrarily well for functions in . We demonstrate numerical experiments to support our theoretical results.
 Keywords
Constructive Approximation;Neural Network;Gaussian Activation Function;
 Language
English
 Cited by
1.
CONSTRUCTIVE APPROXIMATION BY NEURAL NETWORKS WITH POSITIVE INTEGER WEIGHTS,;;

Korean Journal of Mathematics, 2015. vol.23. 3, pp.327-336 crossref(new window)
1.
CONSTRUCTIVE APPROXIMATION BY NEURAL NETWORKS WITH POSITIVE INTEGER WEIGHTS, Korean Journal of Mathematics, 2015, 23, 3, 327  crossref(new windwow)
 References
1.
L. Beheral, M. Gopal and S. Chaudhury, Trajectory tracking of robot manipulator using Gaussian networks, Robot. Auton. Syst. 13(2)(1994), 107-115. crossref(new window)

2.
D. Chen, Degree of approximation by superpositions of a sigmoidal function, Approx. Theory and Appl. 9(3)(1993), 17-28.

3.
G. Cybenko, Approximation by superpositions of sigmoidal functions, Math. Control Signal 2(1989), 303-314. crossref(new window)

4.
C. Firmin, D Hamad, J. Postaire and R. Zhang, Gaussian neural networks for glass bottles inspection : a learning procedure, Int. J. Neural Syst. 8(1)(1997), 41-46. crossref(new window)

5.
E. J. Hartman, J. D. Keeler and J. M. Kowalski, Layered neural networks with Gaussian hidden units as universal approximations, Neural Comput. 2(2)(1990), 210-215. crossref(new window)

6.
B. I. Hong and N. Hahm, Approximation order to a function in ${\overline{C}({\mathbb{R}})$ by superposition of a sigmoidal function, Appl. Math. Lett. 15(2002), 591-597. crossref(new window)

7.
G. Lewicki and G. Marino, Approximation of functions of finite variation by superpositions of a sigmoidal function, Appl. Math. Lett. 17(2004), 1147-1152. crossref(new window)

8.
W. Light, Techniques for generating approximations via convolution kernels, Numer. Algorithms 5(1993), 247-261. crossref(new window)

9.
H. N. Mhaskar, Versatile Gaussian networks, Proc. IEEEWorkshop on Nonlinear Image and Signal Proc. (1995), 70-73.

10.
M. A. Sartori and P. J. Antsaklis, Gaussian neural networks for control function implementation, Math. Comput. Model. 23(1996), 129-142. crossref(new window)