JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 34, Issue 3,  2012, pp.451-465
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2012.34.3.451
 Title & Authors
COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY
Lee, Sik; Han, Sang-Eon;
  PDF(new window)
 Abstract
Since there are several kinds of continuities of maps between digital spaces, the paper compares them, which can play an important role in digital topology and discrete geometry.
 Keywords
digital topology;Khalimsky topology;digital continuity;digital isomorphism (homeomorphism);
 Language
English
 Cited by
 References
1.
P. Alexandorff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.

2.
L. Boxer, Digitally continuous functions Pattern Recognition Letters 15 (1994) 833-839. crossref(new window)

3.
U. Eckhardt, L. J. Latecki, Topologies for digital spaces $Z^{2}$ and $Z^{3}$, Computer Vision Image Understanding 95(2003) 261-262.

4.
N.D. Georgiou, S.E. Han, Generalized topological function spaces and a classication of generalized computer topological spaces, Filomat 26(3) (2012) 539-552. crossref(new window)

5.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005) 73-91. crossref(new window)

6.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1)(2005) 115-129 .

7.
S.E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008) 923-952. crossref(new window)

8.
S.E. Han, Equivalent ($k_{0}, k_{1}$)-covering and generalized digital lifting, Information Sci. 178 (2008) 550-561. crossref(new window)

9.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^{n}$, J. Math. Imaging Vision 31 (2008) 1-16. crossref(new window)

10.
S.E. Han, KD-($k_{0}, k_{1}$)-homotopy equivalence and its applications, J. Korean Math. Soc. 47 (2010) 1031-1054. crossref(new window)

11.
S.E. Han, Extension problem of several continuties in computer topology, Bull. Korean Math. Soc. 47 (2010) 915-932. crossref(new window)

12.
S. E. Han, Category which is suitable for studying Khalimsky topological spaces with digital connectivity, Honam Mathematical Journal 33(2) (2011) 231-246. crossref(new window)

13.
S.E. Han, Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology Appl. 159 (2012) 1705-1714. crossref(new window)

14.
S.E. Han, N.D. Georgiou, On computer topological function space, J. Korean Math. Soc. 46 (2009) 841-857. crossref(new window)

15.
Jeang Min Kang, S.E. Han, Compression of Khalimsky topological spaces, Filomat, in press.

16.
E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and Its Applications, 36(1) (1991) 1-17.

17.
In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Appl. Math. 110 (2010) 399-408. crossref(new window)

18.
T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

19.
A. Rosenfeld, Arcs and curves in digital pictures, Jour. of the ACM, 20 (1973) 81-87. crossref(new window)