JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SHEAF-THEORETIC APPROACH TO THE CONVOLUTION ALGEBRAS ON QUIVER VARIETIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 1,  2013, pp.1-15
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.1.1
 Title & Authors
SHEAF-THEORETIC APPROACH TO THE CONVOLUTION ALGEBRAS ON QUIVER VARIETIES
Kwon, Namhee;
  PDF(new window)
 Abstract
In this paper, we study a sheaf-theoretic analysis of the convolution algebra on quiver varieties. As by-products, we reinterpret the results of H. Nakajima. We also produce a refined form of the BBD decomposition theorem for quiver varieties. Finally, we study a construction of highest weight modules through constructible functions.
 Keywords
Convolution;Steinberg variety;quiver variety;highest weight module;Lie algebra;constructible function;
 Language
English
 Cited by
 References
1.
A. Beilinson, A. Bernstein and P. Deligne, Faisceaux pervers, Asterisque 100 (1982).

2.
A. Borel and J. Moore, Homology theory for locally compact spaces, Michigan Math. J. 7 (1960), 137-159. crossref(new window)

3.
N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhauser, Boston, 1997.

4.
W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), 257-293. crossref(new window)

5.
V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.

6.
A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515-530. crossref(new window)

7.
N. Kwon, Borel-Moore homology and K-theory on the Steinberg variety, Michigan Math. J. 58 (2009), 771-781. crossref(new window)

8.
G. Lusztig, On quiver varieties, Adv. in Math. 136 (1998), 141-182. crossref(new window)

9.
H. Nakajima, Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416. crossref(new window)

10.
H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. crossref(new window)

11.
P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute Lectures 51, Springer-Verlag, 1978.

12.
D. Yamakawa, Geometry of multiplicative preprojective algebra, IMRP 2008 (2008), 77pp.