JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOG-SINE AND LOG-COSINE INTEGRALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 2,  2013, pp.137-146
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.2.137
 Title & Authors
LOG-SINE AND LOG-COSINE INTEGRALS
Choi, Junesang;
  PDF(new window)
 Abstract
Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.
 Keywords
Beta function;Gamma function;Log-sine and log-cosine integrals;Harmonic numbers;Generalized harmonic numbers;Odd harmonic numbers;Generalized odd harmonic numbers;Riemann Zeta function;Hurwitz (or generalized) Zeta function;Psi (or Digamma) function;Polygamma functions;Euler-Mascheroni constant;
 Language
English
 Cited by
1.
FURTHER LOG-SINE AND LOG-COSINE INTEGRALS,;

충청수학회지, 2013. vol.26. 4, pp.769-780 crossref(new window)
1.
HARMONIC NUMBERS AT HALF INTEGER AND BINOMIAL SQUARED SUMS, Honam Mathematical Journal, 2016, 38, 2, 279  crossref(new windwow)
2.
Series representations for special functions and mathematical constants, The Ramanujan Journal, 2016, 40, 2, 291  crossref(new windwow)
3.
FURTHER LOG-SINE AND LOG-COSINE INTEGRALS, Journal of the Chungcheng Mathematical Society, 2013, 26, 4, 769  crossref(new windwow)
 References
1.
V. S. Adamchik and H. M. Srivastava, Some series of the Zeta and related functions, Analysis 18 (1998), 131-144.

2.
N. Batir, Integral representations of some series involving $(^{2k}_k)^{-1}k^{-n}$ and some related series, Appl. Math. Comput. 147 (2004), 645-667. crossref(new window)

3.
M. G. Beumer, Some special integrals, Amer. Math. Monthly 68 (1961), 645-647. crossref(new window)

4.
J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), 734-740; doi: 10.1016/j.amc.2011.01.062 crossref(new window)

5.
J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequ. Appl. 2013, 2013:49. http://www.journalofinequalitiesandapplications.com/content/2013/1/49 crossref(new window)

6.
J. Choi, Y. J. Cho and H. M. Srivastava, Log-sine integrals involving series associated with the Zeta function and Polylogarithms, Math. Scand. 105 (2009), 199-217.

7.
J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), 51-70. crossref(new window)

8.
J. Choi and H. M. Srivastava, Some applications of the Gamma and Polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals, Math. Nachr. 282 (2009), 1709-1723. crossref(new window)

9.
J. Choi and H. M. Srivastava, Explicit evaluations of some families of log-sine and log-cosine integrals, Integral Transforms Spec. Funct. 22 (2011), 767-783. crossref(new window)

10.
J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Computer Modelling 54 (2011), 2220-2234. crossref(new window)

11.
M. W. Coffey, On some series representations of the Hurwitz zeta function, J. Comput. Appl. Math. 216 (2008), 297-305. crossref(new window)

12.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

13.
L. Lewin, Polylogarithms and Associated Functions, Elsevier (North-Holland), New York, London and Amsterdam, 1981.

14.
Th. M. Rassias and H. M. Srivastava, Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131 (2002), 593-605. crossref(new window)

15.
L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and ${\zeta}$(n), Trans. Amer. Math. Soc. 347 (1995), 1391-1399.

16.
A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), 93-113. crossref(new window)

17.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

18.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York, 2012.

19.
K. S. Williams and N.-Y. Zhang, Special values of the Lerch Zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993), 35-49. crossref(new window)

20.
N.-Y. Zhang and K. S. Williams, Values of the Riemann Zeta function and integrals involving log (2 sinh $\frac{\theta}{2}$) and log (2 sin $\frac{\theta}{2}$), Pacific J. Math. 168 (1995), 271-289.

21.
I. J. Zucker, On the series ${\Sigma}^{\infty}_{k=1}(^{2k}_k)^{-1}k^{-n}$ and related sums, J. Number Theory 20 (1985), 92-102. crossref(new window)