JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE BOREL-CANTELLI LEMMA UNDER PAIRWISE EXTENDED NEGATIVE QUADRANT DEPENDENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 2,  2013, pp.163-171
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.2.163
 Title & Authors
THE BOREL-CANTELLI LEMMA UNDER PAIRWISE EXTENDED NEGATIVE QUADRANT DEPENDENCE
Ko, Mi-Hwa;
  PDF(new window)
 Abstract
By extending the negatively quadrant dependence, the paper puts forth the concept of extended negative quadrant dependence. A generalization of the second Borel-Cantelli lemma is obtained under extended negative quadrant dependence. Some applications are also introduced.
 Keywords
Borel-Cantelli lemma;Extended negative quadrant dependence;Generalization of the Borel-Cantelli lemma;
 Language
English
 Cited by
 References
1.
Block, H.W., Savits, T.H. and Shaked, M., Some concepts of negative dependence, Ann. Probab. 10 (1982), 765-772. crossref(new window)

2.
Chung, K.L. and Erdos, P., On the application of Borel-Cantelli lemma, Trans. Amer. Soc. 72 (1952), 179-186. crossref(new window)

3.
Chandra, T.K., The Borel-Cantelli lemma under dependence conditions, Statist. Probab. Lett. 78 (2008), 390-395. crossref(new window)

4.
Erdos, P. and Renyi, A., On Cantor's series with convergent ${\Sigma}\frac{1}{qn}$, Ann. Univ. Sei. Vudapest. Sect. Math. 2 (1959), 93-109.

5.
Ko, B. and Tang, Q., Sums of dependent nonnegative random variables with subexponential tails, J. Appl. Prob. 45 (2008), 85-94. crossref(new window)

6.
Lehmann, E.L., Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153. crossref(new window)

7.
Liu, L., Precise large deviations for dependent variables with heavy tails, Statist. Probab. Lett. 79 (2009), 1290-1298. crossref(new window)

8.
Petrov, V.V., A note on the Borel-Cantelli lemma, Statist. Probab. Lett. 58 (2002), 283-286. crossref(new window)

9.
Petrov, V.V., A generalization of the Borel-Cantelli lemma, Statist. Probab. Lett. 67 (2004), 233-239. crossref(new window)