JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 2,  2013, pp.179-200
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.2.179
 Title & Authors
A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE
Cho, Dong Hyun;
  PDF(new window)
 Abstract
Let denote the function space of all real-valued continuous paths on . Define by $Xn(x)
 Keywords
analogue of Wiener measure;analytic conditional Feynman integral;analytic conditional Fourier-Feynman transform;analytic conditional Wiener integral;conditional convolution product;
 Language
English
 Cited by
1.
RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE,;

호남수학학술지, 2013. vol.35. 1, pp.51-71 crossref(new window)
2.
CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE,;

대한수학회지, 2013. vol.50. 5, pp.1105-1127 crossref(new window)
3.
CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE,;

충청수학회지, 2013. vol.26. 2, pp.323-342 crossref(new window)
1.
CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE, Journal of the Korean Mathematical Society, 2013, 50, 5, 1105  crossref(new windwow)
 References
1.
Brue M. D., A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.

2.
Cameron R. H., Storvick D. A., Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.

3.
Chang K. S., Cho D. H., Kim B. S., Song T. S., Yoo I., Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14(3) (2003), 217-235. crossref(new window)

4.
Chang S. J., Skoug D., The effect of drift on conditional Fourier-Feynman transforms and conditional convolution products, Int. J. Appl. Math. 2(4) (2000), 505-527.

5.
Cho D. H., A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. 2012, submitted.

6.
Cho D. H., Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23(6) (2012), 405-420. crossref(new window)

7.
Cho D. H., A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59(2) (2009), 431-452. crossref(new window)

8.
Cho D. H., Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an $L_p$ theory, J. Korean Math. Soc. 41(2) (2004), 265-294. crossref(new window)

9.
Cho D. H., Kim B. J., Yoo I., Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), 421-438. crossref(new window)

10.
Folland G. B., Real analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1984.

11.
Huffman T., Park C., Skoug D., Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347(2) (1995), 661-673. crossref(new window)

12.
Im M. K., Ryu K. S., An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39(5) (2002), 801-819. crossref(new window)

13.
Johnson G. W., Skoug D. L., The Cameron-Storvick function space integral: an L($L_p,\;L_p'$)-theory, Nagoya Math. J. 60 (1976), 93-137.

14.
Kim M. J., Conditional Fourier-Feynman transform and convolution product on a function space, Int. J. Math. Anal. 3(10) (2009), 457-471.

15.
Laha R. G., Rohatgi V. K., Probability theory, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

16.
Ryu K. S., Im M. K., A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354(12) (2002), 4921-4951. crossref(new window)

17.
Ryu K. S., Im M. K., Choi K. S., Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15(3) (2009), 319-337.

18.
Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.

19.
Yeh J., Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973.