JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TWO CHARACTERIZATION THEOREMS FOR LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 3,  2013, pp.329-342
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.3.329
 Title & Authors
TWO CHARACTERIZATION THEOREMS FOR LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM
Jin, Dae Ho;
  PDF(new window)
 Abstract
We study lightlike hypersurfaces M of a semi-Riemannian space form with a semi-symmetric non-metric connection whose structure vector field is tangent to M. Our main result is two characterization theorems for such a lightlike hypersurface.
 Keywords
screen quasi-conformal;lightlike hypersurface;semi-symmetric non-metric connection;
 Language
English
 Cited by
 References
1.
Ageshe, N.S. and Chafle, M.R.: A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23(6) (1992), 399-409.

2.
Calin, C.: Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).

3.
de Rham, G.: Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. crossref(new window)

4.
Duggal, K.L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

5.
Duggal, K.L. and Jin, D.H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

6.
Duggal, K.L. and Jin, D.H.: A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, J. Geom. Phys. 60 (2010), 1881-1889. crossref(new window)

7.
Duggal, K.L. and Sahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art ID 57585, 1-21.

8.
Duggal, K.L. and Sahin, B.: Generalized Cauchy-Riemann lightlike Submanifolds of indefinite Sasakian manifolds, Acta Math. Hungar. 122(1-2) (2009), 45-58. crossref(new window)

9.
Duggal, K.L. and Sahin, B.: Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.

10.
Hawking, S.W. and Ellis, G.F.R.: The large scale structure of space-time, Cambridge University Press, Cambridge, 1973.

11.
Jin, D.H.: Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, submitted in Indian J. Pure Appl. Math.

12.
Jin, D.H.: Einstein lightlike hypersurfaces of a Lorentz space form with a semi- symmetric non-metric connection, accepted in Bull. Korean Math. Soc. 2012. crossref(new window)

13.
Jin, D.H.: Two characterization theorems for irrotational lightlike geometry, accepted in Commun. Korean Math. Soc. 2013.

14.
Jin, D.H.: Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection, accepted in Journal of Inequalities and Applications, 2013.

15.
Jin, D.H.: Lightlike submanifolds of a semi-Riemannian manifold with a semi- symmetric non-metric connection, J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 19(3) (2012), 211-228. crossref(new window)

16.
Kang, T.H., Jung, S.D., Kim, B.H., Pak, H.K. and Pak, J.S.: Lightlike hyper- surfaces of indefinite Sasakian manifolds, Indian J. Pure Appl. Math. 34 (2003), 1369-1380.

17.
Kupeli, D.N.: Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.

18.
Massamba, F.: Screen almost conformal lightlike geometry in indefinite Ken- motsu space forms, Int. Electron. J. Geom. 5(2) (2012), 36-58.

19.
O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

20.
Yasar, E., Coken, A.C. and Yucesan, A.: Lightlike hypersurfaces in semi- Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008), 253-264.