JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 3,  2013, pp.525-540
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.3.525
 Title & Authors
INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS
Lee, Jeong Gon; Hur, Kul; Lim, Pyung Ki;
  PDF(new window)
 Abstract
We introduce the concept of level subgroups of an interval-valued fuzzy subgroup and study some of its properties. These level subgroups in turn play an important role in the characterization of all interval-valued fuzzy subgroup of a prime cyclic group.
 Keywords
interval-valued fuzzy set;interval-valued fuzzy subgroup;level subgroup;
 Language
English
 Cited by
1.
ON INTERVAL-VALUED FUZZY LATTICES,;;;

호남수학학술지, 2015. vol.37. 2, pp.187-205 crossref(new window)
1.
ON INTERVAL-VALUED FUZZY LATTICES, Honam Mathematical Journal, 2015, 37, 2, 187  crossref(new windwow)
 References
1.
R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63 (1995), 87-90.

2.
M. Cheong and K. Hur, Interval-valued fuzzy ideals and bi-ideals of a semi-group, IJFIS 11 (2011), 259-266.

3.
J. Y. Choi, S. R. Kim and K. Hur, Interval-valued smooth topological spaces, Honam Math. J. 32(4) (2010), 711-738. crossref(new window)

4.
M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and Systems 21 (1987), 1-17. crossref(new window)

5.
S. Y. Jang, K. Hur and P. K. Lim, Interval-valued fuzzy normal subgroups, IJFIS 12(3) (2012), 205-214.

6.
Y. B. Jun, J. J. Bae, S. H. Cho and C. S. Kim, Interval-valued fuzzy strong semi-openness and interval-valued fuzzy strong semi-continuity, Honam Math. J. 28(3) (2006), 417-431.

7.
H. Kang, Interval-valued fuzzy subgroups and homomorphisms, Honam Math. J. 33(4) (2011), 499-518. crossref(new window)

8.
H. Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam Math. J. 32(4) (2010), 593-617. crossref(new window)

9.
K. C. Lee, H. Kang and K.Hur, Interval-valued fuzzy generalized bi-ideals of a semigroup, Honam Math. J. 33(4) (2011), 603-611. crossref(new window)

10.
T.K.Mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1) (1999), 20-38.

11.
L.A.Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. crossref(new window)

12.
L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci 8 (1975), 199-249. crossref(new window)