JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTERVAL-VALUED FUZZY SUBGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 4,  2013, pp.565-582
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.4.565
 Title & Authors
INTERVAL-VALUED FUZZY SUBGROUPS
Lee, Jeong Gon; Hur, Kul; Lim, Pyung Ki;
  PDF(new window)
 Abstract
We study the conditions under which a given interval-valued fuzzy subgroup of a given group can or can not be realized as a union of two interval-valued fuzzy proper subgroups. Moreover, we provide a simple necessary and su cient condition for the unio of an arbitrary family of interval-valued fuzzy subgroups to be an interval-valued fuzzy subgroup. Also we formulate the concept of interval-valued fuzzy subgroup generated by a given interval-valued fuzzy set by level subgroups. Furthermore we give characterizations of interval-valued fuzzy conjugate subgroups and interval-valued fuzzy characteristic subgroups by their level subgroups. Also we investigate the level subgroups of the homomorphic image of a given interval-valued fuzzy subgroup.
 Keywords
interval-valued fuzzy subgroup;level subgroup;interval-valued fuzzy conjugate subgroup;interval-valued fuzzy characteristic subgroup;
 Language
English
 Cited by
1.
Lattices of Interval-Valued Fuzzy Subgroups,;;;

International Journal of Fuzzy Logic and Intelligent Systems, 2014. vol.14. 2, pp.154-161 crossref(new window)
1.
Lattices of Interval-Valued Fuzzy Subgroups, International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14, 2, 154  crossref(new windwow)
 References
1.
R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63 (1995), 87-90.

2.
M. Cheong and K. Hur, Interval-valued fuzzy ideals and bi-ideals of a semi-group, IJFIS 11 (2011), 259-266.

3.
J. Y. Choi, S. R. Kim and K. Hur, Interval-valued smooth topological spaces, Honam Math. J. 32(4) (2010), 711-738. crossref(new window)

4.
M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and Systems 21 (1987), 1-17. crossref(new window)

5.
S. Y. Jang, K. Hur and P. K. Lim, Interval-valued fuzzy normal subgroups, IJFIS 12(3) (2012), 205-214.

6.
H. Kang, Interval-valued fuzzy subgroups and homomorphisms, Honam Math. J. 33(4) (2011), 499-518. crossref(new window)

7.
H. Kang and K. Hur, Interval-valued fuzzy subgroups and rings, Honam Math. J. 32(4) (2010), 593-617. crossref(new window)

8.
K. C. Lee, H. Kang and K. Hur, Interval-valued fuzzy generalized bi-ideals of a semigroup, Honam math. J. 33(4) (2011), 603-611. crossref(new window)

9.
K. C. Lee, K. Hur and P. K. Lim, Interval-valued fuzzy subgroups and level subgroups, To be Submitted.

10.
T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1) (1999), 20-38.

11.
L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. crossref(new window)

12.
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci 8 (1975), 199-249. crossref(new window)