JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CUBIC IDEALS IN SEMIGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 4,  2013, pp.607-623
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.4.607
 Title & Authors
CUBIC IDEALS IN SEMIGROUPS
Jun, Young Bae; Khan, Asghar;
  PDF(new window)
 Abstract
Operational properties of cubic sets are first investigated. The notion of cubic subsemigroups and cubic left (resp. right) ideals are introduced, and several properties are investigated. Relations between cubic subsemigroups and cubic left (resp. right) ideals are discussed. Characterizations of cubic left (resp. right) ideals are considered, and how the images or inverse images of cubic subsemigroups and cubic left (resp. right) ideals become cubic subsemigroups and cubic left (resp. right) ideals, respectively, are studied.
 Keywords
Cubic subsemigroups;cubic left (resp. right) ideal;cubic property;(inverse) cubic transformation;
 Language
English
 Cited by
1.
MAPPINGS OF CUBIC SETS, Communications of the Korean Mathematical Society, 2016, 31, 3, 423  crossref(new windwow)
2.
Characterizations of hemirings in terms of cubic $$h$$ h -ideals, Soft Computing, 2015, 19, 8, 2133  crossref(new windwow)
 References
1.
M. Aslam, T. Aroob and N. Yaqoob, On cubic ${\Gamma}$-hyperideals in left almost ${\Gamma}$-semihypergroups, Ann. Fuzzy Math. Inform. 5 (2013), 169-182.

2.
K. Iseki, A characterization of regular semigroups, Proc. Japan Acad., 32 (1965), 676-677.

3.
Y. B. Jun, C. S. Kim and M. S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East. J. Math. Sci. (FJMS) 44 (2010), 239-250.

4.
Y. B. Jun, C. S. Kim and J. G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math. Inform. 1 (2011), 25-34.

5.
Y. B. Jun, C. S. Kim and K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform. 4 (2012), 83-98.

6.
Y. B. Jun, K. J. Lee and M. S. Kang, Cubic structures applied to ideals of BCI- algebras, Comput. Math. Appl. 62 (2011), 3334-3342. crossref(new window)

7.
Y. B. Jun and K. J. Lee, Closed cubic ideals and cubic -subalgebras in BCK/BCI-algebras, Appl. Math. Sci. 4 (2010), 3395-3402.

8.
L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm and BK-relational products, in: R.B. Kearfort et al. (Eds.), Applications of Interval Computations, Kluwer, Dordrecht, (1996), 291-335.

9.
R. Sambuc, Functions -Flous, Application a l'aide au Diagnostic en Pathologie Thyroidienne, These de Doctorat en Medecine, Marseille, 1975.

10.
I. B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20 (1986), 191-210. crossref(new window)

11.
I. B. Turksen, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets and Systems 51 (1992), 295-307. crossref(new window)

12.
I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and Systems 78 (1996) 183-195. crossref(new window)

13.
L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. crossref(new window)

14.
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8 (1975), 199-249. crossref(new window)