JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 4,  2013, pp.647-655
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.4.647
 Title & Authors
A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS
Kim, Jongsu;
  PDF(new window)
 Abstract
We obtain -continuous paths of explicit Riemannian metrics , < , whose scalar curvatures decrease, where is a flat metric, i.e. a metric with vanishing curvature. Most of them can exist on tori of dimension . Some of them yield scalar curvature decrease on a ball in the Euclidean space.
 Keywords
negative scalar curvature;total scalar curvature;scalar curvature functional;
 Language
English
 Cited by
 References
1.
R. Beig, P. T. Chrusciel and R. Schoen, KIDs are non-generic, Ann. Henri Poincare. 6(1) (2005), 155-194. crossref(new window)

2.
A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik. 3 Folge, Band 10, Springer-Verlag, 1987.

3.
J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), 137-189. crossref(new window)

4.
A. E. Fisher and J. E. Marsden, Deformation of scalar curvture, Duke Math. Journal. 42(3) (1975), 519-547. crossref(new window)

5.
Y. Kang and J. Kim, Almost Kahler metrics with non-positive scalar curvature which are Euclidean away from a compact set, Jour. Korean. Math. Soc. 41(5) (2004), 809-820. crossref(new window)

6.
J. Kim, Melting of Euclidean metric to negative scalar curvature, Bull. Korean Math. Soc. 50(4) (2013), 1087-1098. crossref(new window)

7.
J. Lohkamp, Curvature h-principles, Ann. of Math. (2) 142 (1995), 457-498. crossref(new window)

8.
Y. Muto, On Einstein metrics, Jour. Dierential Geom. 9 (1974), 521-530.