JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 35, Issue 4,  2013, pp.729-738
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2013.35.4.729
 Title & Authors
THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION
Hahm, Nahmwoo; Hong, Bum Il;
  PDF(new window)
 Abstract
In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.
 Keywords
localized approximation;neural network;B-spline;
 Language
English
 Cited by
 References
1.
C. K. Chui, X. Li and H. N. Mhaskar, Limitations of the approximation capabilities of neural networks with one hidden layer, Adv. Comput. Math., 5 (1996), 233-243. crossref(new window)

2.
B. Gao and Y. Xu, Univariant approximation by superpositions of a sigmoidal function, J. Math. Anal. Appl., 178 (1993), 221-226. crossref(new window)

3.
N. Hahm and B. I. Hong, Extension of localised approximation by neural networks, Bull. Austral. Math. Soc., 59 (1999), 121-131. crossref(new window)

4.
N. Hahm and B. I. Hong, An approximation by neural networks with a fixed weight, Comput. Math. Appl., 47 (2004), 1897-1903. crossref(new window)

5.
N. Hahm and B. I. Hong, Approximation order to a function in $L_{p}$ space by generalized translation networks, Honam Math. J. 28(1) (2006), 125-133.

6.
N. Hahm and B. I. Hong, A simultaneous neural network approximation with the squashing function, Honam Math. J. 31(2) (2009), 147-156. crossref(new window)

7.
B. I. Hong and N. Hahm, Approximation order to a function in C(R) by superposition of a sigmoidal function, Appl. Math. Lett., 15 (2002), 591-597. crossref(new window)

8.
B. L. Kalman and S. C. Kwasny, Why Tanh : Choosing a sigmoidal function, Int. Joint Conf. on Neural Networks 4 (1992), 578-581.

9.
M. Leshno, V. Lin, A. Pinkus and S. Schocken, Multilayered feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, 6 (1993), 61-80.

10.
G. Lewicki and G. Marino, Approximation of functions of finite variation by superpositions of a sigmoidal function, Appl. Math. Lett. 17 (2004), 1147-1152. crossref(new window)

11.
H. N. Mhaskar and N. Hahm, Neural networks for functional approximation and system identification, Neural Comput., 9 (1997), 143-159. crossref(new window)

12.
L. L. Schumaker, Spline Functions : Basic Theory, Cambridge University Press, Cambridge, 2007.