JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.11-27
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.11
 Title & Authors
ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS
Jin, Hyeonseong;
  PDF(new window)
 Abstract
In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.
 Keywords
multiphase flow;closure;turbulence;constitutive law;
 Language
English
 Cited by
1.
Compressible closure models for turbulent multifluid mixing, Applied Mathematics and Mechanics, 2016, 37, 1, 97  crossref(new windwow)
 References
1.
R. Abgrall and R. Saurel, Discrete equations for physical and numerical compresible multiphase mixtures, J. Comp. Phys., 186 (2003), 361-396. crossref(new window)

2.
R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena Second Edition, John Wiley & Sons, New York, 2002.

3.
Y. Chen, Two Phase Flow Analysis of Turbulent Mixing in the Rayleigh-Taylor Instability, PhD thesis, University at Stony Brook, 1995.

4.
Y. Chen, J. Glimm, D. H. Sharp, and Q. Zhang, A two-phase flow model of the Rayleigh-Taylor mixing zone, Phys. Fluids, 8(3) (1996), 816-825. crossref(new window)

5.
B. Cheng, J. Glimm, D. Saltz, and D. H. Sharp, Boundary conditions for a two pressure two phase flow model, Physica D, 133 (1999), 84-105. crossref(new window)

6.
B. Cheng, J. Glimm, and D. H. Sharp, Multi-temperature multiphase flow model, ZAMP, 53 (2002), 211-238. crossref(new window)

7.
B. Cheng, J. Glimm, D. H. Sharp, and Y. Yu, A multiphase flow model for the unstable mixing of layered incompressible materials, Phys. of Fluids, 17:087102-1-07102-8, 2005. Paper No. 087102. LANL Preprint Number LA-UR-05-0078. Stony Brook University Preprint Number SUNYSB-AMS-05-01. crossref(new window)

8.
A. Chinnayya, E. Daniel, and R. Saurel, Modelling detonation waves in heterogeneous energetic materials, J. Comp. Phys., 196 (2004), 490-538. crossref(new window)

9.
D. A. Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech., 15 (1983), 261-291. crossref(new window)

10.
R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor and Francis, Philadelphia, PA, 1995.

11.
J. Glimm, H. Jin, M. Laforest, F. Tangerman, and Y. Zhang, A two pressure numerical model of two fluid mixing, Multiscale Model. Simul., 1 (2003), 458-484. crossref(new window)

12.
J. Glimm, D. Saltz, and D. H. Sharp, Two-pressure two-phase flow, In G.-Q. Chen, Y. Li, and X. Zhu, editors, Nonlinear Partial Differential Equations, pages 124-148. World Scientific, Singapore, 1998.

13.
J. Glimm, D. Saltz, and D. H. Sharp, Statistical evolution of chaotic fluid mixing, Phys. Rev. Lett., 80(4) (1998), 712-715. crossref(new window)

14.
J. Glimm, D. Saltz, and D. H. Sharp, Two-phase modeling of a fluid mixing layer, J. Fluid Mech., 378 (1999), 119-143. crossref(new window)

15.
H. Jin, The averaged equations of compressible multiphase flow, Research Institute of Basic Science, Jeju University, to appear, 2013.

16.
H. Jin, X. F. Liu, T. Lu, B. Cheng, J. Glimm, and D. H. Sharp, Rayleigh-Taylor mixing rates for compressible flow, Phys. Fluids, 17:024104-1-024104-10, 2005. crossref(new window)

17.
H. Jin, J. Glimm, and D. H. Sharp, Compressible two-pressure two-phase flow models, Phys. Lett. A, 353 (2006), 469-474. crossref(new window)

18.
L. Malvern, Introduction to the Mechanics of Continuous Medium, Prentice Hall, 1969.

19.
R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61 (1989), 75-130. crossref(new window)

20.
V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, J. Comp. Phys., 53 (1984), 124-151. crossref(new window)

21.
D. Saltz, W. Lee, and T.-R. Hsiang, Two-phase flow analysis of unstable fluid mixing in one-dimensional geometry, Phy. Fluids, 12(10) (2000), 2461-2477. crossref(new window)

22.
R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150 (1999), 425-467. crossref(new window)

23.
H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comp. Phys., 56 (1984), 363-409. crossref(new window)

24.
G. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.

25.
Forman Williams, Combustion Theory, Addison-Wesley Co., Reading, 1965.