JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NEW APPROACH FOR CHARACTERIZATION OF CURVE COUPLES IN EUCLIDEAN 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 36, Issue 1,  2014, pp.113-129
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2014.36.1.113
 Title & Authors
A NEW APPROACH FOR CHARACTERIZATION OF CURVE COUPLES IN EUCLIDEAN 3-SPACE
Karakus, Siddika Ozkaldi; Ilarslan, Kazim; Yayli, Yusuf;
  PDF(new window)
 Abstract
In this study, we have investigated the possibility of whether any Frenet plane of a given space curve in a 3-dimensional Euclidean space also is any Frenet plane of another space curve in the same space. We have obtained some characterizations of a given space curve by considering nine possible case.
 Keywords
Frenet planes;curvatures;circular helix;generalized helix;rectifying curve;Mannheim curve;Salkowski and anti-Salkowski curve;
 Language
English
 Cited by
1.
CURVE COUPLES AND SPACELIKE FRENET PLANES IN MINKOWSKI 3-SPACE,;;;

호남수학학술지, 2014. vol.36. 3, pp.475-492 crossref(new window)
1.
CURVE COUPLES AND SPACELIKE FRENET PLANES IN MINKOWSKI 3-SPACE, Honam Mathematical Journal, 2014, 36, 3, 475  crossref(new windwow)
 References
1.
Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), 147-152. crossref(new window)

2.
Chen, B. Y. and Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica 33(2) (2005), 77-90.

3.
Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28(2) (2004), 153-163.

4.
Kuhnel, W., Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, 1999.

5.
Liu, H. and Wang, F., Mannheim partner curves in 3-space, Journal of Geometry, 88 (2008), 120-126. crossref(new window)

6.
Millman, R. S. and Parker, G. D., Elements of differential geometry, Prentice-Hall, New Jersey, 1977.